Toward a new parameterization of the Gogny force

F.Chappert, M.Girod, J.F.Berger CEA Bruyères-le-Châtel

Contents

I) From D1S to D1N: the fit of Neutron Matter EOS

II) Extension of the Gogny force:finite range density dependenceII.1) Improvements over D1NII.2) Pairing properties

I)

From D1S to D1N: the fit of Neutron Matter Equation Of State (EOS)

The Gogny force

Analytical form:

14 parameters

(Wi, Bi, Hi, Mi, μ_i) for i=1,2; t_0 , x_0 , α , W_{ls}

Present set of parameters: D1S

• Nuclear matter properties:

$$\rho_0$$
, E_0/A , K , E_{surf} , m_{eff} , E_{sym}

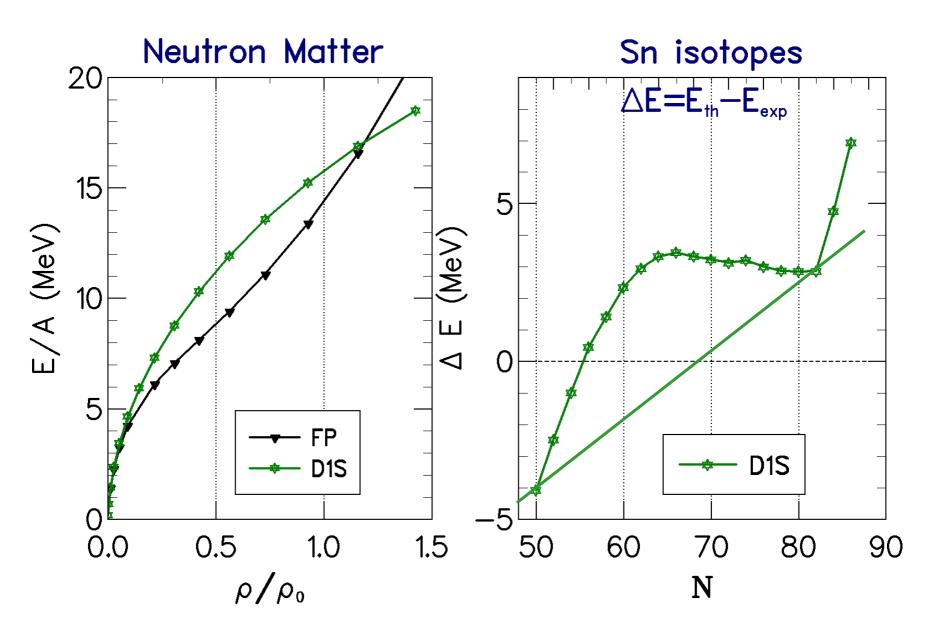
• Pairing properties:

Odd-Even mass differences, Moments of Inertia

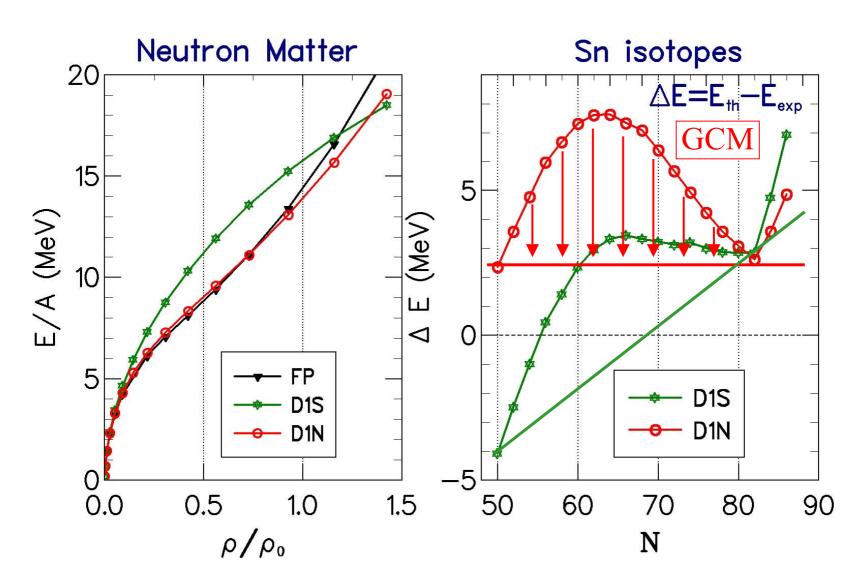
BUT still some deficiencies:

- Neutron Matter Equation Of State
- Drift of Binding Energies along isotopic chains

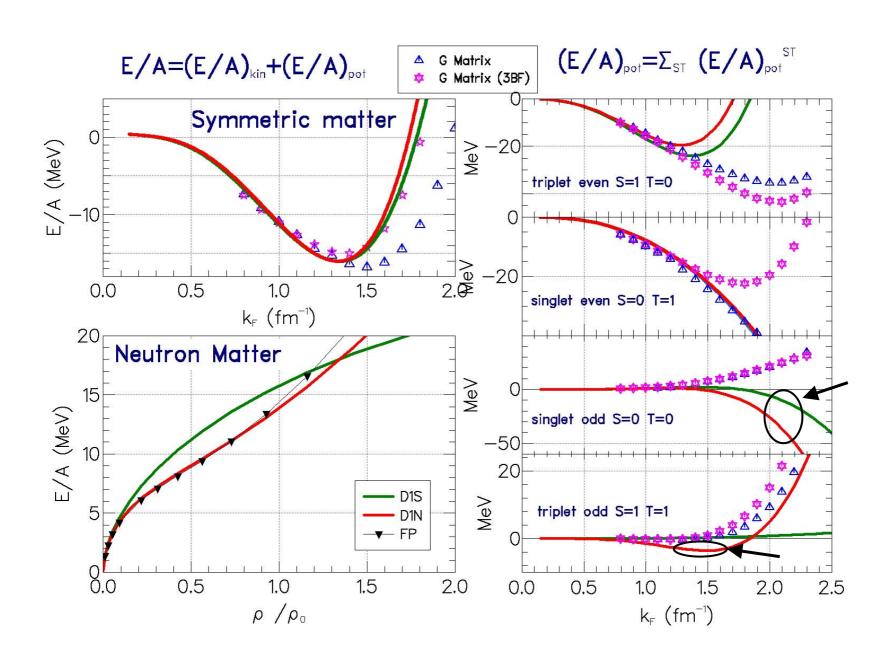
D1S: What can be improved?



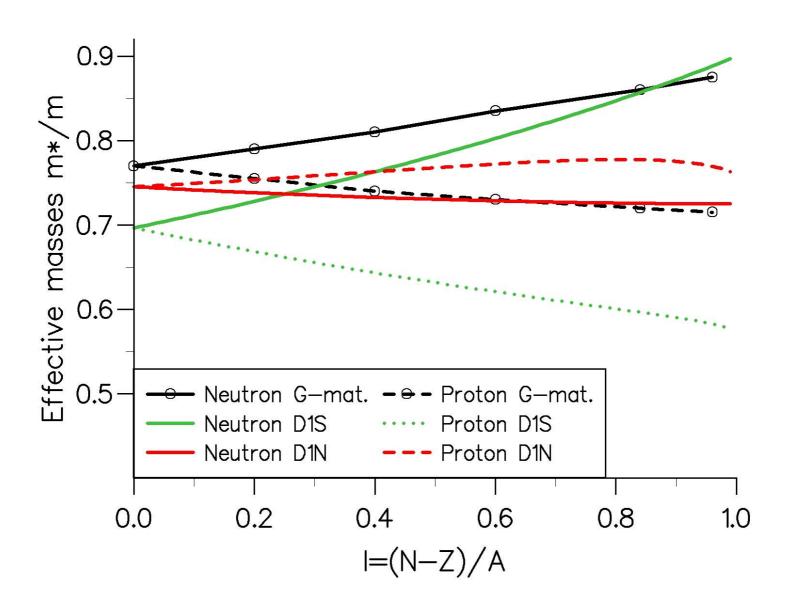
From D1S to D1N: the fit of Neutron Matter EOS



Potential Energies in ST-channels



Splitting of Effective Masses in asymmetric matter



Conclusion 1

Fit of the Neutron Matter EOS: D1S D1N drift of Binding Energies along isotopic chains has disappeared

BUT:

Potential Energies in odd ST channels (ST=00,11)

disagree with microscopic predictions (G-matrix)

Splitting of Neutron and Proton effective masses

Zero range terms:

- density dependende
- spin-orbit

II) Extension of the Gogny force:finite range density dependence

II.1) Improvements over D1N

II.2) Pairing properties

II) Extension of the Gogny force

II.1) Present analytical form: D1, D1S, D1N

$$V(|\vec{r}_1 - \vec{r}_2|) =$$

$$\sum_{i=1,2} \exp^{\left\{-\frac{(\vec{r}_{1} - \vec{r}_{2})^{2}}{\mu_{j}^{2}}\right\}} \cdot \left(W_{j} + B_{j}P_{\sigma} - H_{j}P_{\tau} - M_{j}P_{\sigma}P_{\tau}\right)$$

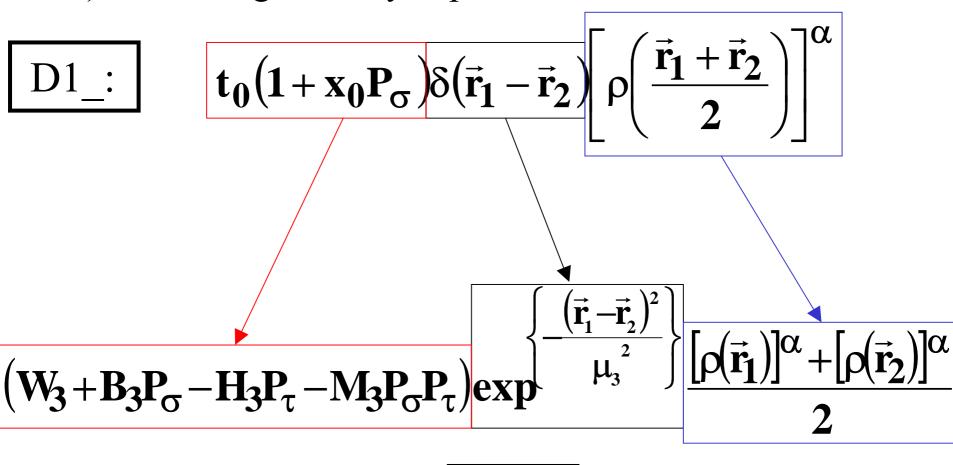
$$+ t_0 (1 + x_0 P_{\sigma}) \delta(\vec{r}_1 - \vec{r}_2) \left[\rho \left(\frac{\vec{r}_1 + \vec{r}_2}{2} \right) \right]^{\alpha} \frac{\text{density}}{\text{dependence}}$$

$$+i.W_{ls}\vec{\nabla}_{12}.\delta(\vec{r}_1-\vec{r}_2)\times\vec{\nabla}_{12}.(\vec{\sigma}_1+\vec{\sigma}_2)$$

+ Coulomb

II) Extension of the Gogny force

II.2) Finite range density dependent term



D2

II) Extension of the Gogny force

II.1) New analytical form: D2

$$\mathbf{V}\!\!\left(\!\left|\vec{\mathbf{r}}_{\!1}\!-\!\vec{\mathbf{r}}_{\!2}\right|\right)\!\!=\!$$

$$\sum_{j=1,2} \left(\mathbf{W}_{j} + \mathbf{B}_{j} \mathbf{P}_{\sigma} - \mathbf{H}_{j} \mathbf{P}_{\tau} - \mathbf{M}_{j} \mathbf{P}_{\sigma} \mathbf{P}_{\tau} \right) \exp^{\left\{ -\frac{\left(\vec{\mathbf{r}}_{1} - \vec{\mathbf{r}}_{2}\right)^{2}}{\mu_{j}^{2}} \right\}}$$
 central

$$+ \left(W_{3} + B_{3}P_{\sigma} - H_{3}P_{\tau} - M_{3}P_{\sigma}P_{\tau}\right) exp^{\left\{-\frac{\left(\vec{r}_{1} - \vec{r}_{2}\right)^{2}}{\mu_{3}^{2}}\right\}} \left[\frac{\rho^{\alpha}(\vec{r}_{1}) + \rho^{\alpha}(\vec{r}_{2})}{2}\right]$$

$$+i.W_{ls}\vec{\nabla}_{12}.\delta(\vec{r}_1-\vec{r}_2)\times\vec{\nabla}_{12}.(\vec{\sigma}_1+\vec{\sigma}_2)$$

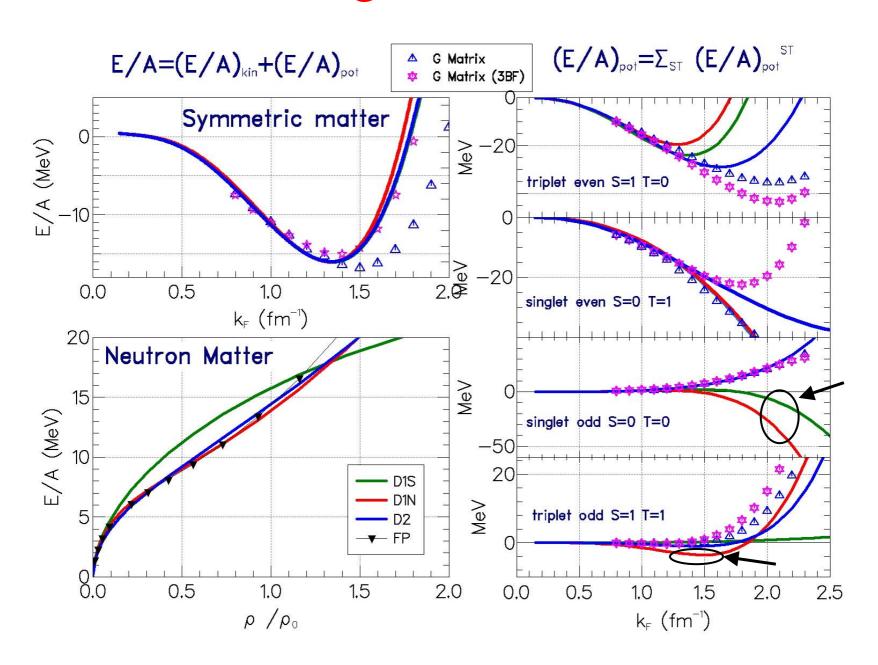
density

+Coulomb

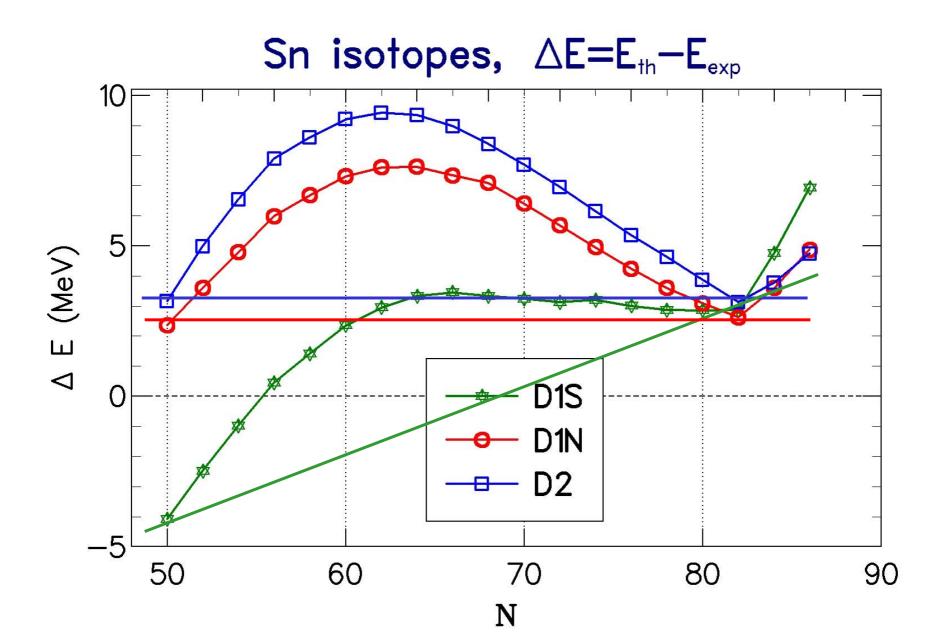
II) D2: Extension of the Gogny force

II.1) Improvements over D1N

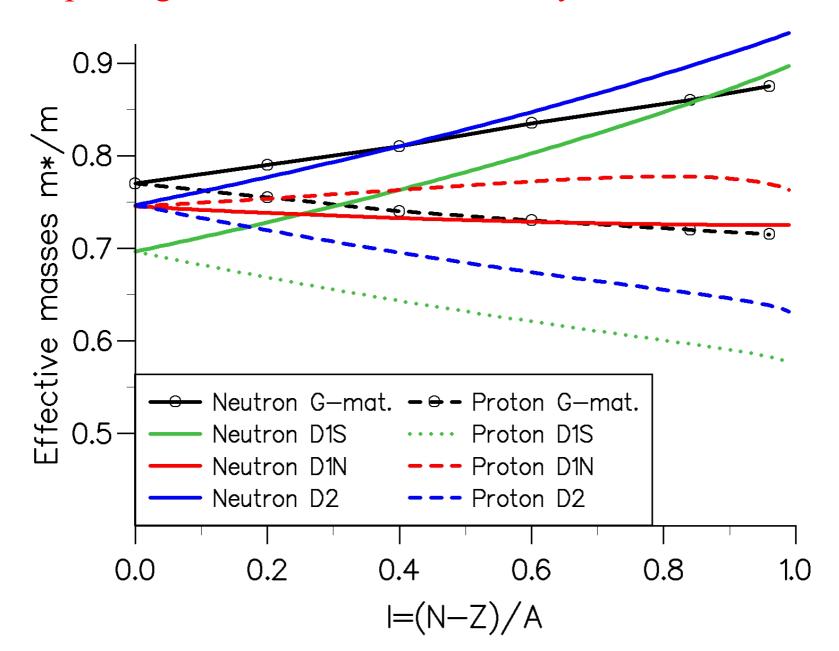
Potential Energies in ST-channels



Drift of B.E. with D2



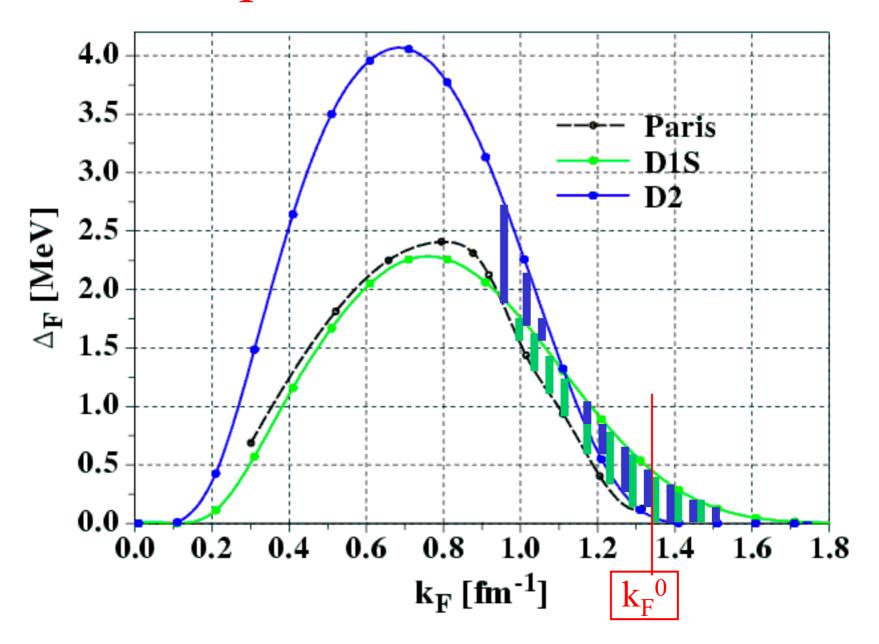
Splitting of Effective Masses in asymmetric matter



II) D2: Extension of the Gogny force

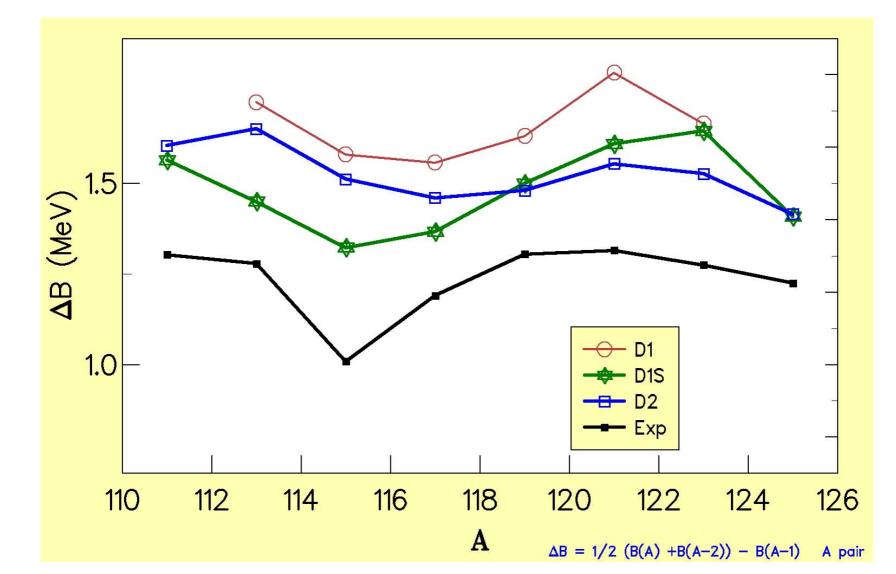
II.2) Pairing properties

Gap in Nuclear Matter



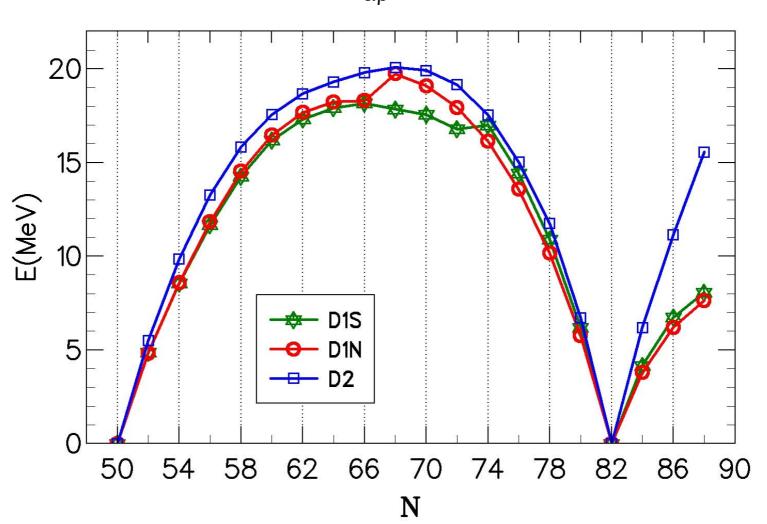
Pairing in Sn isotopes

$$\Delta \mathbf{B} = \frac{\mathbf{B}_{\mathbf{A}-1} + \mathbf{B}_{\mathbf{A}+1}}{2} - \mathbf{B}_{\mathbf{A}}, \text{ A odd}$$

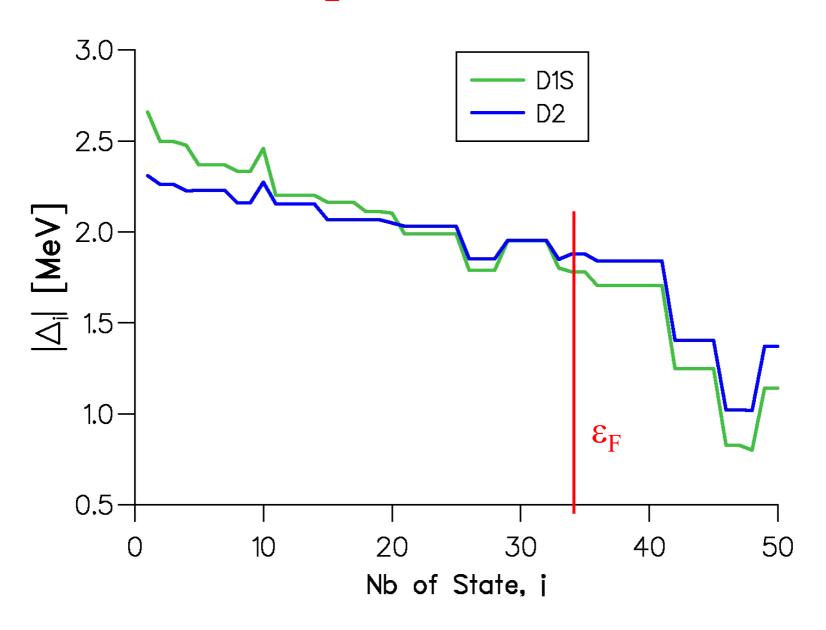


Pairing energy in Sn isotopes

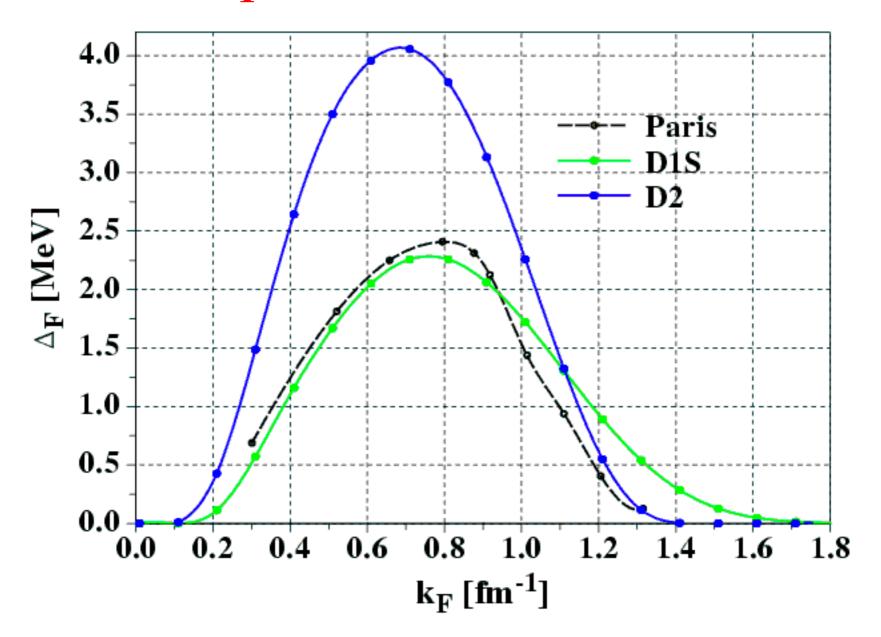
$$E^{HFB}_{pair} = \frac{1}{2} \sum_{\alpha\beta} \Delta_{\alpha\beta} K_{\beta\alpha}$$



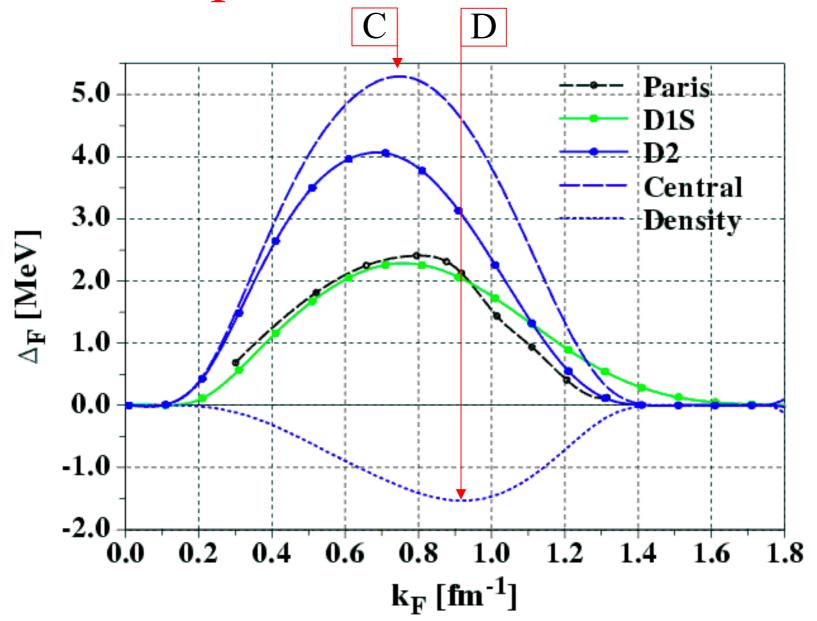
Gaps in ¹¹⁶Sn



Gap in Nuclear Matter



Gap in Nuclear Matter



How to correct this?

$$W_1 - B_1 - H_1 + M_1$$

$$W_2 - B_2 - H_2 + M_2$$

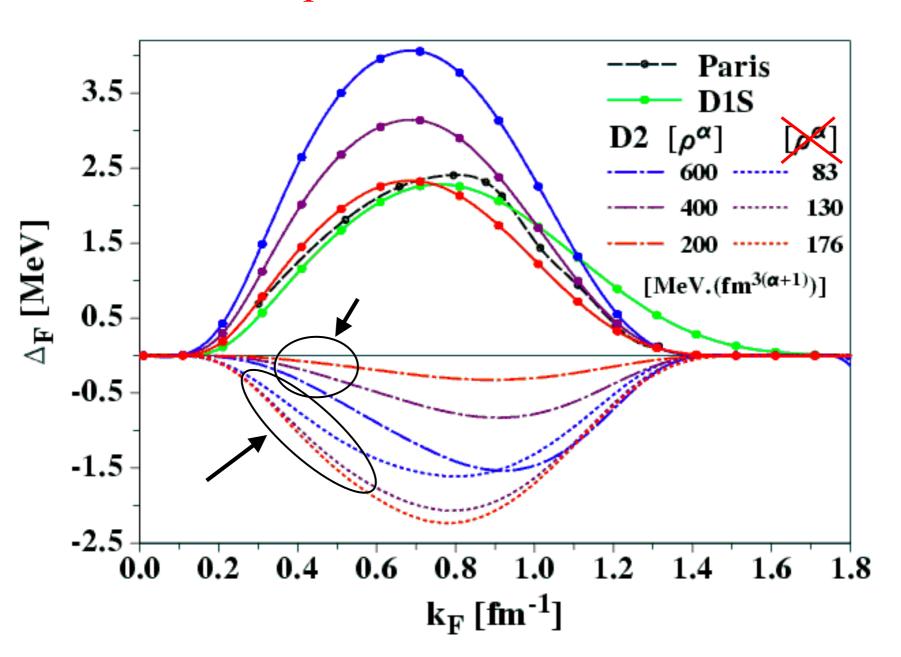
$$W_2-B_2-H_2+M_2$$
 $W_3-B_3-H_3+M_3$

 W_3 - B_3 - H_3 + M_3 [ρ^{α}] is given a prescribed value

$$\langle 1S, 1S | V_{12} | 1S, 1S \rangle_{S=0,T=1} = -V_{1S}$$
 $\langle 2S, 2S | V_{12} | 2S, 2S \rangle_{S=0,T=1} = -V_{2S}$
 $\langle W_1 - B_1 - H_1 + M_1 \rangle$
 $\langle W_2 - B_2 - H_2 + M_2 \rangle$

	D1S	D2	D2	D2
W_3 - B_3 - H_3 + $M_3[\rho^{\alpha}]$ (MeV.fm ^{3(\alpha+1)})	0	600	400	200
$W_1-B_1-H_1+M_1$ (MeV)	193	83	130	176
$W_2-B_2-H_2+M_2 \text{ (MeV)}$	-119	-141	-143	-146

Gap in Nuclear Matter



Conclusion 2

- D2: Finite range density dependence
- More realistic potential energies in odd ST channels
- Correct splitting of effective masses: m_n*>m_p*

- Role of the density dependence for pairing?
 - \longrightarrow Gap in nuclear matter $\Delta_F(k_F)$
 - → Effects on nuclei properties?

Acknowledgements

Nuclear Structure Theory group:

J.F. Berger, M.Girod

B.Ducomet, H.Goutte, S.Peru, N.Pillet, V.Rotival