

A. Tohsaki, H. Horiuchi, G. Röpke, P. Sch. T. Yamada and Y. Funaki

- α -condensation in ∞ matter
- ⁸Be and Hoyle state in ${}^{12}C^*$
- α -condensate wave function
- Effective GPE for $n.\alpha$ condensate
- Conclusions, outlook

Clusters important aspect and richness of nuclear systems due to 4 Fermions :

Proposal :

Trapping of 4 different species of Fermionic atoms.

2

Infinite matter :

• Pair Condensation (nn or pn)
$$\epsilon_1 = \frac{p_1^2}{2m}$$

• Thouless criterion for T_c : $f_1 = \frac{1}{1 + e^{\frac{(\epsilon_1 - \mu)}{T}}}$

$$(2\mu - \epsilon_1 - \epsilon_2) \psi_{12} = (1 - f_1 - f_2) \sum_{1'2'} v_{121'2'} \psi_{1'2'}$$

 μ chemical-potential and f_1, f_2 Fermi-Dirac at $T = T_c$.

• α -Particle Condensation : G. Röpke, M. Beyer

 α -Condensation only at very low density !

Finite nuclei ? Exact ⁸Be : Density : $\frac{\rho_0}{3}$

3 rd α-particle

Fermi gas

collapse

V

compact ground state V_3

 ${}^{12}C$

Does a dilute $3\alpha \ ^{12}C^*$ state exist ? Similar to $^8Be + \alpha$?

At $T = 10^8 K$ helium burning thermal equilibrium

$$\alpha + \alpha + \alpha \rightarrow {}^{8}Be \rightarrow \alpha \rightarrow {}^{12}C^{*} O_{2}^{+}$$

$$O_2^+$$
 : dilute $3lpha$ state hypothesis !

7

it seems impossible to get Hoyle state from shell model calculation !45 MeV B. Barret

If O_2^+ in¹²C dilute α – state

then $\alpha\text{-condensate}$ infinite matter $\rho_{\rm crit}\sim\frac{\rho_0}{3}$

all n. α nuclei possess exited n α condensed state

Analogy with atoms in traps ! $\rho(r) = N |\phi_0(r)|^2$ $N = 10^6$

Theoretical Description

Ideal Bose condensate : $|0\rangle = b_0^{\dagger} b_0^{\dagger} \cdots b_0^{\dagger} |vac\rangle$

 α -particle condensate : $|\Phi_{\alpha C}\rangle = C^{\dagger}_{\alpha}C^{\dagger}_{\alpha}\cdots C^{\dagger}_{\alpha}|vac\rangle$

In *r*-space : $\langle \vec{r}_1, \vec{r}_2, \cdots, \vec{r}_{4n} | \Phi_{\alpha C} \rangle = \mathcal{A} \{ \Phi(\vec{r}_1, \vec{r}_2, \vec{r}_3, \vec{r}_4) \Phi(\vec{r}_5, \vec{r}_6, \vec{r}_7, \vec{r}_8) \cdots \Phi(\vec{r}_{4n-3}, \vec{r}_{4n-2}, \vec{r}_{4n-1}, \vec{r}_{4n}) \}$

In comparison with pairing :

$$\langle \vec{r}_1, \vec{r}_2, \cdots | BCS \rangle = \mathcal{A} \{ \Phi(\vec{r}_1, \vec{r}_2) \Phi(\vec{r}_3, \vec{r}_4) \cdots \}$$

Variational ansatz for $\Phi(\vec{r}_1, \vec{r}_2, \vec{r}_3, \vec{r}_4)$:

$$\Phi(\vec{r}_{1},\vec{r}_{2},\vec{r}_{3},\vec{r}_{4}) = e^{-\frac{2}{B^{2}}\vec{R}^{2}}\phi_{\alpha}(\vec{r}_{i}-\vec{r}_{j})$$

Center of mass :
$$\vec{R} = \frac{1}{4} (\vec{r_1} + \vec{r_2} + \vec{r_3} + \vec{r_4})$$

Intrinsic α -wave function :

$$\phi_{\alpha}\left(\vec{r}_{i}-\vec{r}_{j}\right)=e^{-\frac{1}{8b^{2}}\left\{\left(\vec{r}_{4}-\vec{r}_{1}\right)^{2}+\left(\vec{r}_{4}-\vec{r}_{2}\right)^{2}+\left(\vec{r}_{4}-\vec{r}_{3}\right)^{2}+\cdots\right\}}$$

Two variational parameters : *B*, *b*

Two limits :
$$B = b$$
 $|\Phi_{\alpha C}\rangle =$ Slater determinant
 $B \gg b$ $|\Phi_{\alpha C}\rangle =$ gas of independent α -particles

Two dimensional surface :
$$E(B,b) = \frac{\langle \Phi_{\alpha C} | H | \Phi_{\alpha C} \rangle}{\langle \Phi_{\alpha C} | \Phi_{\alpha C} \rangle}$$

Hamiltonian :

$$H = T + V_{N-N} + V_C + V_{N-N-N}$$

Kin. energy Gaussien Coulomb Gaussian

Quantization of energy surface E(B, b) :

Force : A. Tohsaki ~ 1990 no adjustable parameters !

Hill-Wheeler :

$$|\psi\rangle = \sum_{B} f_{B} |\Phi_{\alpha C}(B)\rangle$$

Without adjustable parameters :

Radial behavior of S-wave α **orbit vs.** $R_{\rm rms}$

 $R_{\rm rms}$ =2.43 fm \rightarrow 4.84 fm (ρ/ρ_0 =1.1 \rightarrow 0.14)

Some more numbers :

		Theory	Exp.
	O_1^+	-89.52	-92.16
${}^{12}C:$	O_2^+	-81.79	-84.51
		7.73	7.65

Spectrum of ⁸**Be :**

 12 C : Second excited 2^+ : 2^+_2

It has been discovered recently by Itoh et~al. 2.6 MeV above 3 α rhreshold Width $\sim 1~{\rm MeV}$: resonance in continuum

Theory : We start with deformed α condensate state :

$$\Phi_{n\alpha} \propto \mathcal{A} \prod_{i=1}^{n} \exp\left\{-\frac{2X_{ix}^2}{B_x^2} - \frac{2X_{iy}^2}{B_y^2} - \frac{2X_{iz}^2}{B_z^2}\right\} \Phi_{\alpha_i}$$

Then projection on good angular momentum

Then Hill Wheeler or GCM For width : ACCC method

Internal structure :

Extremely dilute 3α state Suggests a pure Boson picture $|\phi_0\rangle = b_0^+ b_0^+ b_0^+ \dots |vac\rangle$ Hartree – Fock (Gross Pitaevsky eq) for ideal bosons (α ' s) :

$$\left[-\frac{\hbar}{2m_{\alpha}}\Delta + N\int d^3r' v(\vec{r} - \vec{r'})|\phi_0(\vec{r'})|^2\right]\phi_0(\vec{r}) = \epsilon_0\phi_0(\vec{r})$$

effective α – α + Coulomb T. Yamada

Estimate for maximum number

 $\mathsf{N}^{\alpha}_{limit} \simeq 10 \qquad \Rightarrow \qquad {}^{40}\mathsf{Ca}^{**}$

BUT

Some neutrons can stabilise 8 Be unbound, 9 Be bound (2.5 MeV) 10 Be strongly bound ! May be 20 - 30 α 's possible !

Boson occupancy :

 α -particle density matrix :

 $ho_{lpha}(ec{R},ec{R'}), \quad ec{R} \,:\, {
m c.m.}\,\, {
m of}\,\, lpha$

Diagonalization :

 $^{12}C: O_2^+$ 70% S-wave occupancy

Conclusions

- Strong indications that extended $\alpha\text{-condensates}$ exist, $\alpha\text{-condensate-halos}$
- Adding some neutron glue, condensates may become very large : ten's of α 's ! Highly excited but long life time !
- Indra : ${}^{36}Ar + {}^{36}Ni \Rightarrow 9\alpha$ (M.F. Rivet, B. Borderie)
- α -energies \rightarrow wavefcts Chimera
- Why α , not ${}^{16}O$, ${}^{40}Ca$ α very inert and compact, almost ideal Boson, 20 MeV first excitation May be ${}^{48}Cr \rightarrow 3 \times {}^{16}O$
- Ultimate question : How to prove α -particle superfluidity ?

- Eventually important in nuclear astrophysics : collapsing massive stars
- Nuclei immersed in a gas of neutrons + some protons at finite $T \to {\rm Can}$ lead to gas of $\alpha{\rm -particles}$
- \bullet may be $\alpha\text{-particle condensate}$
- change of equation of state
- change of neutrino absorption
- influence on collapse scenario

Figure 5.27: The α - α - α correlation function is shown. Resonances from the excited states of ¹²C are labelled with the first peak seen more clearly in the inner upright panel.

