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(1) P.Ring and P.Schuck, “The Nuclear Many-Body Problem”, Springer-Verlag, 1980.



I. Introduction

Nucleus = A interacting nucleons
(2≤A ≤270)

(QCD not yet usable)
Many-body problemN-N interaction

Numerical solution of 
exact equations

A≤12-14

Approximations

Bare forces In medium forces

(Phenomenological)



I. Introduction

N-N potential and Independent Particle Model

• N-N potential

“molecular potential” + spin-isospin dependence + …

Nucleonic charge g:  g2/hc ~ 12-14
Fine structure constant : α=e2/hc= 1/137

• In nuclei 

Evidence for shell structure
Magic numbers : 2, 8, 20, 28, 50, 82, 126

Independent particle model works : existence of a mean field

V(r)

r



Current theoretical nuclear approaches

Shell model Mean field theories 
• Inert core + valence space

• Effective interaction between 
valence nucleons

• Conservation of symmetries

• All correlations taken into 
account between valence nucleons

Description of all excited states

• No inert core  (binding energies)

• Effective force between all nucleons

• Symmetry breaking

• Correlations incorporated step by 
step

Hartree-Fock (HF)

Pairing    (BCS,HFB)

Collective excitations   (RPA,GCM)

I. Introduction

Variational mp-mh configuration mixing method :

Attempt to unify the description of correlations 

beyond HF approximation



Variational mp-mh configuration mixing method

Theoretical point of view

• Gives a unified description of {Pairing + RPA + particle vibration}  
correlations on top of HF mean field theory

• Respects conservation of particle numbers and Pauli principle
• Treats on the same footing even-even nuclei, odd and odd-odd nuclei
• Can describe both ground states and excited states

Particular interesting physical cases

• K isomers 
• Pairing correlations
• Light exotic nuclei



II. Variational mp-mh configuration mixing method

Trial wave function

Superposition of Slater Determinants (SD) corresponding to 

mp-mh excitations upon a given state of HF type

|Ψ >= A0p0h
πν |φπφν >0p0h +

∑

απαν

A1p1h
απαν

|φαπφαν >1p1h +
∑

απαν

A2p2h
απαν

|φαπφαν >2p2h +...

|Φατ >=
m∏

(kl)=1

(a+
k al)|Φτ >0p0h Variational parameters :

Mixing coefficients

|Φτ >0p0h= |HF >=
N∏

i=1

a+
i |0 > Single particle orbitals



II. Variational mp-mh configuration mixing method

Variational principle 

F = E − λ < Ψ|Ψ >• Functional:

E[ρ] =< Ψ|Ĥ[ρ]|Ψ >=< Ψ|K̂ + V̂ [ρ]|Ψ >

∂F
∂A∗

απαν

= 0• Determination of mixing coefficients:

∂F
∂ϕτ∗

i

= 0• Determination of optimized single particle states:



•Simultaneous solution of both equations (iterative)
→ self-consistent procedure
→ Renormalization of the HF field 

One-body density matrix 
of correlated states

ρ =< Ψ|ρ̂|Ψ >

Single particle states

[h[ρ], ρ] = G(ρ, σ)

∂F
∂ϕτ∗

i

= 0

Mixing coefficients

∂F
∂A∗

απαν

= 0

∑

απαν

Aαπαν < φαπφαν |Ĥ + δĤ|φα′
π
φα′

ν
>= λAα′

πα′
ν

∑

απ

Aαπα′
ν
(< φα′

π
|Ĥπ|φαπ > +

∑

mn

Cπ
mn < φα′

π
|a+

man|φαπ >)+
∑

αν

Aα′
παν (< φα′

ν
|Ĥν|φαν > +

∑

mn

Cν
mn < φα′

ν
|a+

man|φαν >)+
∑

απαν

Aαπαν < φα′
π
φα′

ν
|V̂ πν |φαπφαν > = λAα′

πα′
ν

II. Variational mp-mh configuration mixing method

•In the present work : [ ][ ] 0,h =ρρ



II. Variational mp-mh configuration mixing method

Residual interaction

• Pairing

1p1p

2p 2p
1h 1h

2h2h

>< 1122 pp|V|pp
>< 1122 hh|V|hh

>< pp|V|hh

>< hh|V|pp

p ph h

h hp p

• RPA

>< 2121 hh|V|pp

>< 2121 ph|V|hp

>< 2121 pp|V|hh

1p 1h

2p
2h

1p 2p1h 2h 1h 2h1p 2p



II. Variational mp-mh configuration mixing method

• Particle vibration coupling

1p

1h

2h 3h

1p

2p

1h 3p
>< 2113 ph|V|pp

>< 1132 ph|V|hh



Gogny phenomenological effective force (1)

( )

( ) ( )

( ) ( )
2

21122112LS

21
2103

2

1j
jjjj

/)rr(
12

.rriW

2
rrrrPx1t

PPMPHPBWeV
2
j

2
21

rrrrrs

rr
rr

+∇∧−∇+

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

−++

−−+= ∑
=

−−

σσδ

ρδ
α

σ

τστσ
µ

II. Variational mp-mh configuration mixing method

Central

Density-dependent

Spin-orbit

( )( )
21

2

z2z1 rr
e121 rr
−

+++ ττ Coulomb

•The two ranges (µj=1,2= 0.7 et 1.2 fm) simulate the “molecular potential”

•Density dependence necessary for saturation

• Spin-orbit necessary for magic numbers

14 parameters adjusted on nuclear matter properties and on some 
stable nuclei

(1) J.Dechargé and D.Gogny, Phys.Rev. C21, 1568 (1980)



II. Variational mp-mh configuration mixing method

Solution of secular equation 

• Lanczos method

- Standard diagonalization method : CPU time increases like N3 (N matrix    
dimension)

- Adapted to the search of lowest eigenvalues, numerically efficient

- Limitating factor for huge matrices : Lanczos vector storage

• m-scheme (1)

- Method applied for axially deformed nuclei

-Method for coding the Slater Determinant (with good K), the operators and  
storing the non zero matrix elements used in the Lanczos algorithm in shell 
model-type codes

- 80% of the work = proton-neutron part

(1)   R.R.Withehead, A.Watt, B.J.Cole, I.Morrison, Adv. Nucl. Phys. 9, 123 (1977)

E.Caurier and F.Nowacki, Act.Phys.Pol.B, vol. 30 (1999) 705



II. Variational mp-mh configuration mixing method

Calculation schemes

• Possible truncation schemes

- order of excitation in the wave function  (1p1h, 2p2h, …)

- size of the single particle state space

- cut-off energy in mp-mh configurations

• Importance of self-consistency : 

helps to include higher order of HF mp-mh states through 
“renormalization” of mean-field (ρ built with the correlated wave function)

• Still large matrices Need for supercomputers → Tera10, CCRT



II. Variational mp-mh configuration mixing method

Dimension of matrices

• 16O ground state with all correlations  (including proton-neutron)

48 neutron orbitals + 48 proton orbitals

mp-mh truncation 1p1h 2p2h 3p3h 4p4h …
Total dimension 88 31276 5 097411 526 910280 …

•100Sn ground state with only pair excitations (without proton-neutron)

286 neutron orbitals + 286 proton orbitals

mp-mh truncation 1 pair 2 pairs …
62 478001 …13001Total dimension

Number of non zero matrix elements : 5 759 422500

Number of words stored : 17 833 473518 



III. First application – K isomers in 178Hf

First application – K isomers in 178Hf (1)

• 4 isomeric states
• Model assumptions 

- mean field build with the zero range   
interaction Skyrme SIII

- residual interaction : contact interaction

- valence space :  ±5 MeV around the Fermi 
level

- neutron and proton are treated separately

- no self-consistency

106
178
72Hf

6+ :  78 ns  1.55 MeV

+6

−8

8- :    4 s    1.15 MeV

+16

16+ :  31 yr   2.45 MeV

−14

14- :  68 µs  2.57 MeV

• 0+ ground state of 178Hf
- axially deformed nucleus 

- weak level density - weak pairing regime

(1) N.Pillet, P.Quentin and J.Libert, Nucl.Phys. A697 (2002) 141-163



III. First application – K isomers in 178Hf

Neutrons Protons
+25 /

+29 / −29 /

• Quenching of correlations in isomeric states

• Importance of the configuration mixing  (effect on energies)

Isomers mp-mh Exp. εph

2.45 1.4842.5916+

−25 /

−27 /
λ λ

+27 /

Neutron Proton
HF 1 pair (>1%) HF 1 pair (>1%)

21 36540+ 68
8-

1.17 (n)
1.42 (p)

1.15
0.637
0.84616+ 91 3 68 24

6+
1.41 (n)
2.25 (p)

1.54
1.278
1.565(in %)

14- 2.83 2.57 2.120

(in MeV)



III. Second application – Richardson model

Second application – Richardson exact solution 
for the Pairing hamiltonian

• Exact solution (1)

- Similarity between the many-fermion-pair system with pairing forces and      
the many-boson system with one-body forces

- Exact wave function : mp-mh wave function including all the  
configurations built as pair excitations

- Exact solution obtained from a coupled system of algebraic equations 
deduced from variational principle

Ĥ =
∑

f

2εf N̂f − g
∑

ff ′
b+
f b′f

N̂f =
1

2
(a+

f af + a+
f
af)

b+
f = a+

f a+
f

[b+
f , bf ′ ]+ = δff ′(1 − 2N̂f)

• Pairing hamiltonian

Test of the importance of the different terms in the mp-mh wave function 
expansion (2p2h, 4p4h ...)

(1) R.W. Richardson, Phys.Rev. 141 (1966) 949



III. Second application – Richardson model

Picket fence model

gεi
εi+1

d

• System of 2N particles in 2N equispaced and doubly-degenerated levels

• System of identical fermions

• Constant pairing interaction strength

• Prototype of axially deformed nuclei



III. Second application – Richardson model

Ground state Correlation energy (1)

Ecorr=E(g≠0)-E(g=0)

∆Ecorr = Ecorr (exact) – Ecorr (mp-mh)

10 20 30 40 50 60 70 80

Ecut

0

10

20

30

40
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60

E
co

rr
 (%

) g=0.18
g=0.30
g=0.42
g=0.54
g=0.66

2N=16

Truncation in excitation energyTruncation in mp-mh order of excitation

g  (Pairing interaction strength)

(1) N.Pillet, N.Sandulescu, Nguyen Van Giai and J.-F.Berger , Phys.Rev. C71 , 044306 (2005) 



III. Second application – Richardson model

Ground state occupation probabilities



III. Third application – Pairing in 116Sn

Third application-Pairing in 116Sn with Gogny force (1)

• 116Sn  : spherical nucleus with Z=50 and N=66

• Mean field and residual parts of Hamiltonian calculated with the
D1S Gogny force

• Wave function built only with pair excitations (excluding pn pairs)

• Correlation energy : Ecor =< Ψ|Ĥ [ρ]|Ψ > − < HF |Ĥ[ρ]|HF >

(1) N.Pillet, J.-F.Berger, E.Caurier and M.Girod, Int.J.Mod.Phys. E15, 464 (2006)

N.Pillet, J-F. Berger, E.Caurier and H.Goutte , paper under preparation.



III. Third application – Pairing in 116Sn

116Sn - Correlation energy

0 50 100 150 200 250 300

Number of neutron single particle levels

0

2

4

6

-E
co

rr
 (

M
eV

)

2p2h

4p4h

BCS

Fixed proton valence space (286 levels)

Binding energy in 116Sn
Exp      :  988.683 MeV

HF        :  981.462 MeV

BCS     :  984.826 MeV

mp-mh :  986.903 MeV

2p2h :  4.474 MeV

4p4h :  0.967 MeV
→ need for 4p4hmp-mh 5.441 MeV

-Ecorr =         BCS              3.364 MeV

difference     2.077 MeV



III. Third application – Pairing in 116Sn

100Sn - Correlation energy

0 50 100 150 200 250 300

Number of neutron single particle levels

0

1

2

3

4

-E
co

rr
  (

M
eV

)
2p2h

4p4h

Fixed proton valence space (286 levels)

mp-mh 3.672 MeV

-Ecorr =         BCS              0.000 MeV

difference     3.672 MeV

2p2h :  3.397 MeV

4p4h :  0.275 MeV
→ 4p4h less 

important in 100Sn



III. Third application – Pairing in 116Sn

Correlated Wave Functions

HF (1 pair)ν (1 pair)π (2 pairs)ν
(1 pair)ν
(1 pair)π

(2 pairs)π

65.38 0.171.232.684.5026.04116Sn

100Sn 90.85 5.02 3.70 0.16 0.18 0.09

75 components > 0.05% → 23.2%
• 2 configurations 2p2h built with 1d3/2 : 8.2%

• 6 configurations 2p2h built with 0h11/2: 2.5 %

• 67 configurations : 12.5%   (0.05%<x<0.3%)

(number of configurations : ~ 70 millions)

26.04

5.02

0.05%  <37 components<0.1%
(number of configurations : 63 millions)

(%)



III. Third application – Pairing in 116Sn

Single particle level spectrum
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III. Third application – Pairing in 116Sn

Single particle states occupation probabilities

•116Sn
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•100Sn
No impact of correlations on occupancies !



III. Third application – Pairing in 116Sn

Preliminar results - Self-consistency effect - 116Sn

• Correlation energy

(MeV) 1 pair
Non self-consistent 4.474

Approximate Self-consistent 5.065
Energy gain

• Correlated wave function 

(%) HF 1 pair
12.71
17.40

Non self-consistent 87.29
Approximate Self-consistent 82.60



Summary

• Self-consistent mp-mh approach
unifies the description of important correlations beyond mean field in 
nuclei (Pairing, RPA, Particle vibration)

Now tractable for medium-heavy nuclei with present computers 
(pairing hamiltonian)

• First applications to nuclear superfluidity quite encouraging

• Future ones : collective vibrations, exotic light nuclei

• Requires re-definition of effective N-N interaction in pn channels 
(under way)
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