œ

Variational Multiparticle-Multihole Configuration Mixing Method

Nathalie Pillet

J-F. Berger, H. Goutte, M. Girod (DPTA/SPN,CEA-DAM IIe-de-France, Bruyères-Ie-Châtel, France) E. Caurier (IRes, Strasbourg, France)

Cross talks in the physics of many body systems, december 6-8 (2006), Institut Henri Poincaré, Paris.

Plan

- I. Introduction ⁽¹⁾
- II. Formalism of the variational multiparticle-multihole (mp-mh) configuration mixing method
- **III.** Three applications

(1) P.Ring and P.Schuck, "The Nuclear Many-Body Problem", Springer-Verlag, 1980.

Cerv N-N potential and Independent Particle Model

• N-N potential

"molecular potential" + spin-isospin dependence + ...

Nucleonic charge g: $g^2/hc \sim 12-14$ Fine structure constant : $\alpha = e^2/hc = 1/137$

• In nuclei

 ✓ Evidence for shell structure Magic numbers : 2, 8, 20, 28, 50, 82, 126

✓ Independent particle model works : existence of a mean field

Current theoretical nuclear approaches

Shell model

- Inert core + valence space
- Effective interaction between • valence nucleons
- Conservation of symmetries
- All correlations taken into account between valence nucleons

✓ Description of all excited states

Mean field theories

- No inert core (binding energies)
- Effective force between *all* nucleons
- Symmetry breaking
- Correlations incorporated step by step
 - ✓ Hartree-Fock (HF)

✓ Pairing (BCS,HFB)✓ Collective excitations (RPA,GCM)

Variational mp-mh configuration mixing method :

Attempt to unify the description of correlations

beyond HF approximation

CCC Variational mp-mh configuration mixing method

Theoretical point of view

- Gives a unified description of {Pairing + RPA + particle vibration} correlations on top of HF mean field theory
- Respects conservation of particle numbers and Pauli principle
- Treats on the same footing even-even nuclei, odd and odd-odd nuclei
- Can describe both ground states and excited states

Particular interesting physical cases

- K isomers
- Pairing correlations
- Light exotic nuclei

Trial wave function

Superposition of Slater Determinants (SD) corresponding to mp-mh excitations upon a given state of HF type

$$|\Psi\rangle = A^{0p0h}_{\pi\nu} \phi_{\pi} \phi_{\nu} \rangle_{0p0h} + \sum_{\alpha_{\pi}\alpha_{\nu}} A^{1p1h}_{\alpha_{\pi}\alpha_{\nu}} \phi_{\alpha_{\pi}} \phi_{\alpha_{\nu}} \rangle_{1p1h} + \sum_{\alpha_{\pi}\alpha_{\nu}} A^{2p2h}_{\alpha_{\pi}\alpha_{\nu}} \phi_{\alpha_{\pi}} \phi_{\alpha_{\nu}} \rangle_{2p2h} + \dots$$

$$|\Phi_{\alpha_{\tau}}\rangle = \prod_{(kl)=1}^{m} (a_k^+ a_l) |\Phi_{\tau}\rangle_{0p0h}$$

$$|\Phi_{\tau}\rangle_{0p0h} = |HF\rangle = \prod_{i=1}^{N} a_{i}^{+}|0\rangle$$

Variational parameters : Mixing coefficients Single particle orbitals

Variational principle

• Functional: $\mathcal{F} = E - \lambda < \Psi | \Psi >$

$$E \quad = <\Psi |\hat{H} \quad |\Psi> = <\Psi |\hat{K} + \hat{V}| \quad |\Psi>$$

• Determination of mixing coefficients:

• Determination of optimized single particle states: $\frac{1}{2}$

 \rightarrow sen-consistent procedure \rightarrow Renormalization of the HF field

•In the present work : $[h[\rho], \rho] = 0$

Residual interaction

• Pairing

• RPA

 $\begin{array}{c|c} \mathbf{p}_1 & \mathbf{h}_1 \\ \mathbf{p}_2 & \mathbf{h}_2 \end{array} \quad \mathbf{p}_1 & \mathbf{h}_1 & \mathbf{h}_2 \\ \mathbf{p}_2 & \mathbf{h}_2 \end{array} \quad \mathbf{p}_1 & \mathbf{h}_1 & \mathbf{h}_2 \\ \mathbf{p}_2 & \mathbf{h}_1 & \mathbf{p}_2 & \mathbf{h}_1 & \mathbf{p}_2 \\ \mathbf{p}_2 & \mathbf{h}_2 & \mathbf{h}_2 \end{array}$

Particle vibration coupling

$$p_1$$
 h_1 p_3
 p_2

$$h_1$$

 h_2 p_1 h_3

$$< p_3 p_1 | V | h_1 p_2 >$$

$$<$$
 h₂**h**₃ | **V** | **h**₁**p**₁ >

II. Variational mp-mh configuration mixing method

$$Gogny phenomenological effective force (1)$$

$$V_{I2} = \sum_{j=1}^{2} e^{-(r_{I}-r_{2})^{2}/\mu_{j}^{2}} (W_{j} + B_{j}P_{\sigma} - H_{j}P_{\tau} - M_{j}P_{\sigma}P_{\tau}) \quad Central$$

$$+ t_{3}(I + x_{0}P_{\sigma})\delta(\vec{r}_{I} - \vec{r}_{2}) \left[\rho\left(\frac{\vec{r}_{I} + \vec{r}_{2}}{2}\right)\right]^{\alpha} \quad Density-dependent$$

$$+ iW_{LS}\bar{\nabla}_{I2}\delta(\vec{r}_{I} - \vec{r}_{2}) \wedge \bar{\nabla}_{I2}\cdot(\vec{\sigma}_{I} + \vec{\sigma}_{2}) \quad Spin-orbit$$

$$+ (I + 2\tau_{Iz})(I + \tau_{2z}) \frac{e^{2}}{|\vec{r}_{I} - \vec{r}_{2}|} \quad Coulomb$$

•The two ranges ($\mu_{j=1,2}$ = 0.7 et 1.2 fm) simulate the "molecular potential"

•Density dependence necessary for saturation

• Spin-orbit necessary for magic numbers

➡ 14 parameters adjusted on nuclear matter properties and on some stable nuclei

Solution of secular equation

• Lanczos method

- Standard diagonalization method : CPU time increases like N³ (N matrix dimension)

- Adapted to the search of lowest eigenvalues, numerically efficient
- Limitating factor for huge matrices : Lanczos vector storage
- m-scheme ⁽¹⁾
 - Method applied for axially deformed nuclei

-Method for coding the Slater Determinant (with good K), the operators and storing the non zero matrix elements used in the Lanczos algorithm in shell model-type codes

- 80% of the work = proton-neutron part
 - (1) R.R.Withehead, A.Watt, B.J.Cole, I.Morrison, Adv. Nucl. Phys. 9, 123 (1977)

E.Caurier and F.Nowacki, Act.Phys.Pol.B, vol. 30 (1999) 705

Calculation schemes

- Possible truncation schemes
 - order of excitation in the wave function (1p1h, 2p2h, ...)
 - size of the single particle state space
 - cut-off energy in mp-mh configurations
- Importance of self-consistency :

helps to include higher order of HF mp-mh states through "renormalization" of mean-field (ρ built with the correlated wave function)

• Still large matrices → Need for supercomputers → Tera10, CCRT

Dimension of matrices

¹⁶O ground state with all correlations (including proton-neutron)
 48 neutron orbitals + 48 proton orbitals

mp-mh truncation	1p1h	2p2h	3p3h	4p4h	
Total dimension	88	31276	5 097411	526 910280	

•¹⁰⁰Sn ground state with only pair excitations (without proton-neutron)

286 neutron orbitals + 286 proton orbitals

mp-mh truncation	1 pair	2 pairs	
Total dimension	13001	62 478001	

Number of non zero matrix elements : 5 759 422500

Number of words stored : 17 833 473518

First application – K isomers in ¹⁷⁸Hf ⁽¹⁾

• 4 isomeric states

Model assumptions

- mean field build with the zero range interaction Skyrme SIII
- residual interaction : contact interaction
- valence space : ±5 MeV around the Fermi level
- neutron and proton are treated separately
- no self-consistency
- 0⁺ ground state of ¹⁷⁸Hf
 - axially deformed nucleus
 - weak level density weak pairing regime

(1) N.Pillet, P.Quentin and J.Libert, Nucl.Phys. A697 (2002) 141-163

	Neutron		Proton		
	HF 1 pair (>1%)		HF	1 pair (>1%)	
0+	68	21	54	36	
16⁺	91	3	68	24	

(in %)

Isomers	mp-mh	Exp.	٤ _{ph}
16+	2.59	2.45	1.484
0	1.17 (n)	1 1 5	0.637
0-	1.42 (p)	1.15	0.846
6+	1.41 (n)	4 54	1.278
OΤ	2.25 (p)	1.54	1.565
14-	2.83	2.57	2.120

(in MeV)

- Quenching of correlations in isomeric states
- Importance of the configuration mixing (effect on energies)

Second application – Richardson exact solution for the Pairing hamiltonian

Pairing hamiltonian

$$\hat{H} = \sum_{f} 2\epsilon_f \hat{N}_f - g \sum_{ff'} b_f^+ b_f'$$

$$\hat{N}_{f} = \frac{1}{2}(a_{f}^{+}a_{f} + a_{\overline{f}}^{+}a_{\overline{f}})$$
$$b_{f}^{+} = a_{f}^{+}a_{\overline{f}}^{+}$$
$$[b_{f}^{+}, b_{f'}]_{+} = \delta_{ff'}(1 - 2\hat{N}_{f})$$

• Exact solution ⁽¹⁾

- Similarity between the many-fermion-pair system with pairing forces and the many-boson system with one-body forces

- Exact wave function : mp-mh wave function including all the configurations built as pair excitations

- Exact solution obtained from a coupled system of algebraic equations deduced from variational principle

Test of the importance of the different terms in the mp-mh wave function expansion (2p2h, 4p4h ...)

Picket fence model

- System of 2N particles in 2N equispaced and doubly-degenerated levels
- System of identical fermions
- Constant pairing interaction strength
- Prototype of axially deformed nuclei

Ground state Correlation energy ⁽¹⁾

E_{corr}=E(g≠0)-E(g=0)

 $\Delta E_{corr} = E_{corr} (exact) - E_{corr} (mp-mh)$

Truncation in mp-mh order of excitation

Truncation in excitation energy

(1) N.Pillet, N.Sandulescu, Nguyen Van Giai and J.-F.Berger, Phys.Rev. C71, 044306 (2005)

Ground state occupation probabilities

CEC Third application-Pairing in ¹¹⁶Sn with Gogny force ⁽¹⁾

- ¹¹⁶Sn : spherical nucleus with Z=50 and N=66
- Mean field and residual parts of Hamiltonian calculated with the D1S Gogny force
- Wave function built only with pair excitations (excluding pn pairs)
- Correlation energy : $E_{cor} = \langle \Psi | \hat{H}[\rho] | \Psi \rangle \langle HF | \hat{H}[\rho] | HF \rangle$

(1) N.Pillet, J.-F.Berger, E.Caurier and M.Girod, Int.J.Mod.Phys. E15, 464 (2006)

N.Pillet, J-F. Berger, E.Caurier and H.Goutte, paper under preparation.

¹¹⁶Sn - Correlation energy

¹⁰⁰Sn - Correlation energy

Correlated Wave Functions

(%)	HF	(1 pair) _v	(1 pair) _π	(2 pairs) _v	(1 pair) _v (1 pair) _π	(2 pairs) _π
¹¹⁶ Sn	65.38	26.04	4.50	2.68	1.23	0.17
¹⁰⁰ Sn	90.85	5.02	3.70	0.16	0.18	0.09

- 75 components > 0.05% \rightarrow 23.2%
- 2 configurations 2p2h built with 1d_{3/2}: 8.2%
- 6 configurations 2p2h built with 0h_{11/2}: 2.5 %
- 67 configurations : 12.5% (0.05%<x<0.3%) (number of configurations : ~ 70 millions)

0.05% <37 components<0.1% (number of configurations : 63 millions)

Single particle level spectrum

Single particle states occupation probabilities

•¹¹⁶Sn

•100Sn

No impact of correlations on occupancies !

Cerv Preliminar results - Self-consistency effect - ¹¹⁶Sn

• Correlation energy

(MeV)	1 pair	
Non self-consistent	4.474	Energy gain
Approximate Self-consistent	5.065	

• Correlated wave function

(%)	HF	1 pair
Non self-consistent	87.29	12.71
Approximate Self-consistent	82.60	17.40

Summary

• Self-consistent mp-mh approach

unifies the description of important correlations beyond mean field in nuclei (Pairing, RPA, Particle vibration)

- Now tractable for medium-heavy nuclei with present computers (pairing hamiltonian)
- First applications to nuclear superfluidity quite encouraging
- Future ones : collective vibrations, exotic light nuclei
- Requires re-definition of effective N-N interaction in pn channels (under way)