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Theory, Modeling and Simulation of the 
Collective Behavior of Dislocations

Richard LeSar
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(1)   Introduction to dislocations and plasticity
(2)   Simulation strategies
    -  discrete dislocation dynamics in 2D and 3D
    -  phase-field simulations
(3)   Coarse-graining strategies
     -  temporal
     -  spatial
(4)   Scaling and intermittency

A disclaimer:  no quantum mechanics (today)!
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Macroscopic deformation in fcc metals

single crystal under single slip
µ is the shear modulus

(slope ~ μ)
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Macroscopic deformation in fcc metals

single crystal under single slip
µ is the shear modulus
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All micrographs from
a Cu single crystal
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dark lines in 
micrographs are 
dislocations

- only a few 
macrovariables are 
relevant  

suggestive of 
inherent spatial 
coarse graining
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Multiscale landscape
each level is 
based on 
different 
methods and 
often done 
by different 
groups

How do we 
link these 
together?
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Dislocations are curvilinear topological 
defects that “carry” deformation

!b

Concept connecting flow of dislocations to deformation dates to 1934.  
   •   E. Orowan, Z. Physik, 84, 605 (1934)
   •   G. I. Taylor, Proc. Roy. Soc. London Serial A 145, 362 (1934)

edge dislocation

edges move along slip direction

Burgers vector (  ) measures displacement.  

Edges defined by          .  Note:  dislocations are “signed.”!b⊥ ξ̂
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core



!b || ξ̂
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Other types of dislocations

In general, dislocations are of mixed character:
•dislocations cannot end in a crystal
	 -	   must exist as loops or end at surfaces 
       or other defects
• the Burgers vector is constant for each 
   dislocation loop
•must obey crystallographic constraints

Screw dislocation 
structure and 
movement.

“Mixed” dislocation

screw dislocation has



Owing to constraints of edge components, most dislocation 
movement is planar.  

Movement off plane is atomic-level activated process.

In 3D, dislocations on other slip planes act as 
barriers to dislocation motion:
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Crystallographic constraints

stress balanced 
by “line tension”

cross slip



Frank-Read source:  

Dislocations of opposite sense can annihilate each other:

Dislocation
density increases
with deformation:
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Dislocations are not conserved

Annihilation

ρobs =
τ2

(αµb)2



Frank-Read source:  

Dislocations of opposite sense can annihilate each other:

Dislocation
density increases
with deformation:

Materials Science and Engineering
IOWA STATE UNIVERSITY

Dislocations are not conserved

Annihilation

ρobs =
τ2

(αµb)2



Strain is derivative of displacement (u):  
	

Relation between stress and strain:

We assume isotropic, linear elasticity:
 •elastic properties independent of direction

Elastic constants:

Have formalism for anisotropic elasticity.

σ11= (λ+2µ)ε11+λε22+λε23
σ12= 2µε12
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Isotropic linear elasticity

εi j =
1
2

(
∂ui
∂x j

+
∂u j
∂xi

)
=
1
2
(ui, j+u j,i)

µ= c44 λ= c12 ν=
λ

2(λ+µ)

σkl = ckli jεi j
ci jkl = λδi jδkl +µ(δikδ jl +δilδ jk)

f,i =
∂ f
∂xi

(          )
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Dislocation interactions are long ranged and 
anisotropic

Peach-Koehler force:

Total stress (linear elasticity):

Long-ranged interactions:  
        F ~1/R2, E ~ 1/R

!F
L

= (!b · ¯̄σ)× ξ̂ = εi jkblσ jlξkx̂i

σi j=
µbn
8π

I

C

[
R,mpp(ε jmndli+ εimndl j)

2
1−ν(R,i jm−δi jR,ppm)εkmndlk

]

(                       )R,i jk = ∂3R/∂xi∂x j∂xk

¯̄σi = ¯̄σapp+ ¯̄σsel fi +
Ndis

∑
j !=i

¯̄σ j

self force is
interaction of 
dislocation with self -
line tension



Dislocation density tensor:  continuous, discrete

Kosevich:

Nelson-Toner:
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Energetics

  

€ 

E[ρ(r q )]= 12 d3q Kijkl∫ (r q )ρij(
r q )ρkl(−

r q )

Ki jkl =
µ
q2

[
QikQjl +CilCk j +

2ν
1−ν

Ci jCkl

]

Qi j = δi j −
qiq j

q2 Ci j = εi jk
qk

q

Ω

EI =
µ

16π

Z Z
εiplε jmnR,mp(!r,!r ′)d!rd!r ′

×
{

ρ jl(!r)ρin(!r ′)+δi jρkl(!r)ρkn(!r ′)+
2ν

1−ν
ρil(!r)ρ jn(!r ′)

}

R,mp = ∂2R/∂xm∂xp

R = |!r−!r ′|
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Dynamics

Dynamics are dissipative: 

If inertial effects are not important, assume 
over damped dynamics (i.e., a=0)

Velocity-dependent mass:

2 4 6 8 10
t *

0.2

0.4

0.6

0.8

1
v *

v = M F

!v = !F/γ = M!F

m(v)!a = !F− γ!v

ms(v) =
W0

v2

(
− γ−1 + γ−3)

γ = (1− v2/C2)1/2

Wo =
µb2

4π
ln

(
R
ro

)
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Microstructures on a scale of many microns
• 1 µm3 of copper includes 
   approximately 1011 atoms
•  standard molecular dynamics
   methods can be used only for
   small numbers of dislocations

Mesoscale simulations:
  •  dislocations are the entities of the
     simulations
  •  atomic-level effects included as
     models 

Simulation strategies

Dislocations around crack tip in shocked 
Cu.  Example from Lomdahl, Holian, et al.
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2D model
Parallel dislocations:  “vector” lattice gas of charged particles in 2D.

Note:  b can be +/-
          sign change in F at 45°
          F ~ 1/R (2D), E ~ ln R 

Constraints lead to frustration

➡

Fi

L
= τextbi +∑

j

Fi j

L
bib j

Fi j

L
=

µ
4π(1−ν)

xi j(x2
i j− y2

i j)
(x2

i j + y2
i j)2
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Long-range interactions - the Fast Multipole 
Method in 2D

Greengard-Rohklin method applied to
dislocations:

Stress for edge interactions:

Wang and LeSar, Phil. Mag. 71, 151 (1995) 

φc z( ) = cosθ ln (z) φs z( ) = sin θ ln(z)
φx z( ) = xφc z( ) φy z( ) = yφ s z( )

σ xx =
µb

2π 1− ν( )
2 Im φc

' z( )( ) −Re φx' ' z( )( )+ Re φy' ' z( )( )( ) Perform all expansions 
on generating functions

➡
Fi

L
= τextbi +∑

j

Fi j

L
bib j

Fi j

L
=

µ
4π(1−ν)

xi j(x2
i j− y2

i j)
(x2

i j + y2
i j)2
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Microstructure formation

correlation functions:

➡

Wang, LeSar, and Rickman, 
Phil. Mag. A 78, 1195 (1998)

Gulluoglu, Srolovitz, LeSar, 
Lomdahl, Scripta Metallurgica 
23, 1347-1352 (1989)



Node points are       and tangent vectors at 
each node are      .

     are completely determined by
continuous curvature at nodes.

Most other groups employ straight
dislocation segments
   •  Kubin and coworkers, LLNL
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Representation of dislocations in 3D.

Ghoniem and Sun, Phys Rev B 60, 128 (1999)

We represent dislocation loops with splines:‡

!ri = (1− 3u2 + 2u3)!Pi + (3u2 − 2u3)!Pi+1

+(u− 2u2 + u3)!Ti + (−u2 + u3)!Ti+1

!Pi
!Ti

!Ti
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Dislocation dynamics

Numerical integration along lines gives force on the nodes.

Equation of motion for nodes:

!F
L

= (!b · ¯̄σ)× ξ̂ = εi jkblσ jlξkx̂i

σi j=
µbn
8π

I

C

[
R,mpp(ε jmndli+ εimndl j)

2
1−ν(R,i jm−δi jR,ppm)εkmndlk

]

!v = !F/γ = M!F

!x(t +δt) =!v(t)δt

(                       )R,i jk = ∂3R/∂xi∂x j∂xk

¯̄σi = ¯̄σapp+ ¯̄σsel fi +
Ndis

∑
j !=i

¯̄σ j
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Basic dislocation motion and interactions

Time sequences of
configurations:
(a) F-R source;
(b) Annihilation;
(c) Dipole;
(d) Junction. (a)

(b)

(c) (d)

(a)
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Parallel algorithm

distribution of dislocations is 
inhomogeneous
  -  dislocations span regions
  -  long-range forces through 
     multipole expansion

Z. Wang, N. Ghoniem, S. Swaminarayan, 
and R. LeSar, Journal of Computational 
Physics 219, 608-621 (2006)
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Development of dislocation microstructure
X Y

Z

Simulation volume size: 10µm x 10µm x 10µm

ρ=107/cm2

X Y

Simulation volume size: 10µm x 10µm x 10µm

ρ=2x108/cm2 ρ=7.5x108/cm2

εi j = εei j+ εpi j

σkl = ckli jεe
i j

= ckli j(εi j− εp
i j)

ε̇p =− 1
2V

N

∑
i=1

I

l(i)
v(i)[n(i)⊗b(i) +b(i)⊗n(i)]dl(i)
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Energy-based modeling of dislocations
  •  dislocation content as order parameter
  •  Ginsburg-Landau dynamics
  •  Khachaturyan and coworkers in 3D

2D model:
   •  fundamental quantity is the slip ξ   
   •  dislocation content is given by gradient of the slip

∂ξ(x)
∂t

=
δE[ξ(x)]
δξ(x)

+ τ−η(x,ξ(x))

K =
k22√
k21+ k22

+
1

1−ν
k21√
k21+ k22

E[ξ] =
Z (

µb2

4
K

1+Kd/2
|ξ̂|2− bŝξ̂

1+Kd/2

)
d2k

(2π)2
non-local energy

pinning potential

Koslowski, Cuitiño, Ortiz, J. Mech. Phys. Sol. 50, 2597 (2002)

βpi j = ξ(y)mjsi ui, j = βei j+βpi j
pinned

sliding

v

FFc

ρhi =−εhl jβpji,l
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Large-scale deformation

2D model of 3D behavior:
   •  stress-strain in good agreement with
      experiment
   •  variance shows peak at Stage II-III
      (agrees with Szekely et al.)

M. Koslowski, R. LeSar, and R. Thomson, Phys. Rev. Lett. 93, 125502 (2004).

τ

σ2

Once number of obstacles “saturates”
  •  Stage III behavior

Mimics removal of LC locks (obstacles)
that pin cell walls to reach steady-state.
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Simulations and experiment indicate 
structures are fractal

From 2D phase field, we find same fractal dimension as experiment
   •  implies self-similarity extends from our structures to full cellular 
      structure. 
   •  we measure “cell” sizes as areas with no dislocations, extending 
      scaling to smaller scales

n(A) =CA−D

number of  “cells” 
of area A

fractal dimension
experiment (Hahner et al.)

simulation

M. Koslowski, R. LeSar, and R. Thomson, Phys. Rev. Lett. 93, 
125502 (2004).



L ∝ ρ ∝ τ2

t ∼ τ4

t ∼ L2
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Direct simulations are computationally 
challenging

Time per force calculation         
(length of dislocation), but  
   •   time 
   •   calculations slow down considerably 
        as system is deformed
   •   too slow to include directly in continuum
       calculations
   •   we have formalism for O(N) simulation (FMM)
   •   some issues with boundary conditions

We are developing a coarse-graining approach that enables inclusion 
of dislocation content without resolving dislocation content.
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Spatial coarse graining

Quest in coarse graining:
  •  identify a relatively small set of coarse-grained variables, selected 
     from among a myriad of degrees of freedom
  •  describe system on larger length/time scales than practical (or 
     possible) at scales associated with microscopic simulations 

Coarse graining in other systems:
  •  systems exhibiting coupling on multiple scales, including 
     turbulent fluids, critical magnets, mesoscale mechanics of solids, ...
  •  there has been some success for some systems

A critical question:
  •  Is the development of a CG for dislocations even possible?
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Dislocation density tensor

Average dislocations over volume Ω to obtain the dislocation 
density tensor, ρij
  •  first index is the line direction
  •  the second is the Burgers vector.

Limitations:‡

  •  ρij is an average

  •  no information about structure and energy within Ω 
  •  no information about crystallography
  •  no differentiation between stored and 
      “geometrically necessary” dislocations
  •  unclear what sets optimal length scale for Ω
  •  need evolution equations
 

‡E. Kröner,  Inter. J. Solids and Structures 38, 1115-1134 (2001).

ραβ =
∑

i bβ(i)
∮

Ci
dlα(i)
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Development of a density functional

We divide space into regions with volume Ω.

Moment expansion of EI

  •  find good convergence with gradient expansion (first order)
  •  does not provide information on structures smaller than Ω

EI =
µ

16π

Z Z
εiplε jmnR,mp(!r,!r ′)d!rd!r ′

×
{

ρ jl(!r)ρin(!r ′)+δi jρkl(!r)ρkn(!r ′)+
2ν

1−ν
ρil(!r)ρ jn(!r ′)

} R,mp = ∂2R/∂xm∂xp

R = |!r−!r ′|

LeSar and Rickman, PRB (2004)
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Multipole expansion of dislocation interactions.

Volume of
point 
charges.

Volume of
dislocation
loops.

Φ(!r) =
∑

j
qj

|!r−!rj| ≈
Q
R + !µ·!R

R3 + ...

Q =
∑

j qj

!µ =
∑

j qj!rj

σij = µbn

8π

∮ [
R,mpp(εjmndli + εimndlj)

ραβ =
∑

i bβ(i)
∮

Ci
dlα(i)

ραβγ =
∑

i bβ(i)
∮

Ci
rγ(i)dlα(i)

+ 2
1−νεkmn(R,ijm − δijR,ppm)dlk]

LeSar and Rickman, PRB 65, 144110 (2002)
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Multiple length scales

Polygonization:
•  dislocations form walls
•  structures within walls  

Are there scaling laws that 
connect across scales? 

What is the impact of
substructure on mechanical
properties?

We are developing local governing equations for substructure energetics 
and dynamics
  •  define coarse-graining length



Sloop ∝
Z Z

dsds′
〈

exp
[

i!q ·
(

!R(s, t)−!R(s′, t ′)
)]〉
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Temporal coarse graining

Phenomenological approach (Holt, Rickman and Viñals):

Connection to mesoscale simulation:

∂
∂t
ρij + εilm

∂
∂x

l

jmj = 0

r 
j ∝ ∇δE

δ
t 
ρ 

conservation of Burgers vector

flux law

ρij(
r 
q ,t)ρmn(−

r 
q ,t) dynamical structure factor

polymer loop structure 
factor
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Finite temperature effects
Thermally-induced kinks and jogs lead to
entropic interactions between dislocations.
  •  analogues:  
     -  dipolar chains in electrorheological fluids
     -  Type II superconductors (Halsey and Toor)

Energetics (Kosevich, Nelson-Toner):

  

€ 

E[ρ(r q )]= 12 d3q Kijkl∫ (r q )ρij(
r q )ρkl(−

r q )

Rickman and LeSar, PRB 64, 
94106 (2001)

Ki jkl =
µ
q2

[
QikQjl +CilCk j +

2ν
1−ν

Ci jCkl

]

Qi j = δi j −
qiq j

q2 Ci j = εi jk
qk

q



Isolated line defects:  theory of distributions
  •  e.g., straight screw along z

  •  energy between straight dislocations

Thermally induced kinks and jogs:
   •  Fourier expansion in modes
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Energetics

€ 

estraight(a)=−
µb(1) b(2)

2π
ln(a)

  

€ 

ρij(
r r )= bδi3δj3δ(x)δ(y)

€ 

d2∫ q 1
q2
exp(−iqxa)=−2π ln(a)

!b
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Temperature-dependent force

€ 

d2∫ q 1
q2+k2

exp(−iqxa)= 2π K0(ka)
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log
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€ 

Z = N dω
⊥∫ exp −LΔe⊥

kT
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⊥∫ exp −LΔe⊥
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€ 

F =−kT ln(Z)

€ 

f = −∂F
∂a

partition function

free energy

force

thermal force

transverse polarization

parallel polarization
kT << elastic force
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Temperature and noise
kT << elastic energies
  •   effect of thermal noise mainly through atomic-level processes
      (cross slip, climb, jogs)

Noise arises from fluctuations in long range strain fields
  •  multiplicative

Some work has been done with simple rate equations with added 
multiplicative noise term:
  •  Hahner et al:  fractal structures
  •  our group:  wall stability
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Thermodynamics of local order

Find that ordering, noise, energetics all functions
of dislocation density - define force for ordering
     
     noise: 

     structural order:

     energy:

     force:

R ∼ ρ1/2

α=−0.36±0.01
ξw ∝ ρα

ξw ∝R−0.73

q(x) =∑
y
C(x,y)

ξw = ∑
q(x)>qrandom

q(x)

C(x,y) = standard correlation 
function

α= 0.998±0.001
Eint ∝−ρα

Fξw(t,N) =− ∂E/∂t
∂ξw/∂t

∣∣∣∣
N

Fξw(2τ) ∝ ρβ β= 0.94±0.05
R. Thomson, M. Koslowski, and R. LeSar,  Phys. Rev. B. 73, 
024104 (2006).
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Data provides measure of intermittent flow

Acoustic emission experiments:

Pond, 1972

Vinogradov et al, Phil Mag A 81, 1427 (2001)

Find power law distribution of avalanche
size with exponent 1.6 - 2.0.

ice crystal

Miguel et al., Nature,2001
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Phase-field simulations

Phase-field simulations show avalanche 
behavior:
   •  power-law scaling
   •  same class as fracture, earthquakes, ...
   •  example of self-organized critical 
      system?

M. Koslowski, R. LeSar, and R. Thomson, 
Phys. Rev. Lett. 93, 265503 (2004)

N(A) =CA−σ

σ≈ 1.8±0.1Bursts during one loading step:

Employed phase-field calculations as before:
   •  in Stage I
   •  stress raised in small increments
 

100 101 102 103

101

102

103

104

N
(A

)

A[100b2]

 τ = 0.44 10
−4  

µ

 τ = 1.19 10
−4  

µ
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Single crystal Ni 

Uchic, Dimiduk et al. in Science and Acta Mater. 

Small-scale deformation



Materials Science and Engineering
IOWA STATE UNIVERSITY

Direct measurement of intermittent behavior 
in deformation

N(d) ∝ d−σ

Dimiduk, Woodward, LeSar, Uchic, 
Science 312, 1188-1190 (2006). 

30-40 µm
20 µm
10 µm
2 µm
1 µm

σ∼ 1.60±0.01
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Implications
Simulations and experiment indicate that dislocations form self-
organized critical systems.

Enables us to employ a new set of theories and analysis in dislocation 
theory.  
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Other recent theoretical work of note
Javier Gil Sevillano - size effects (with analogy to flow through 
     porous media)

Michael Zaiser - scaling, statistical mechanics of dislocations

Anter El Azab - kinetic theory of dislocations

Jim Sethna - mesoscale theory based on continuous dislocation 
     theory

Ishtvan Groma - Debye screening in dislocations

...
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How far have we progressed as a field?

A. H. Cottrell:

In 1953 said of strain hardening that ``it was the first problem to be 
attempted by dislocation theory and may be the last that is solved'' 

In 2002, Cottrell summed up progress since 1953 by stating that 
``It is sometimes said that the turbulent flow of fluids is the most 
difficult remaining problem in classical physics.  Not so.  Work 
hardening is worse''

After 50 years, still much to understand about the relation of dislocation 
structure and mechanical response.
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QUESTIONS?


