The means to test nuclear interaction in few-nucleon systems

R. Lazauskas, IPN, Orsay

 Properties of heavy and medium nuclei vary smoothly Individuality of single nucleons is lost

Constant density Constant binding per nucleon

✓ Diverse properties of light nuclei
Nucleons still behave as individuals

Diverse nuclear densities, bindings Neutron richest structures One can still trace NN interaction effects!!! Can handle exactly...

Introduction

Machinery:

Bound states $A \le 12$: Green function Monte-Carlo¹, No-core shell model²,...

¹ S.C. Pieper, V.R. Pandharipande, R.B. Wiringa and J. Carlson: Phys. Rev. C **64** (2001) 014001. ² P. Navratil, J P. Vary, B. R. Barrett: Phys. Rev. Lett. **84** (2000) 5728.

Orsav

Status of ab-initio calc

Scattering A≤4 !!! Faddeev-Yakubovski eq., Hyperspherical Harmonics.

- Schrödinger eq. is not enough (provided solutions are not unique)
 - Faddeev-Yakubovski equations

$\left[\left(\hat{H}_{0}+V_{23}-E\right)\psi_{1}=-V_{23}\left(\psi_{2}+\psi_{3}\right)\right]$
$\left(\hat{H}_{0}+V_{13}-E\right)\psi_{2}=-V_{13}(\psi_{1}+\psi_{3})$
$\left(\hat{H}_{0}+V_{12}-E\right)\psi_{3}=-V_{12}(\psi_{1}+\psi_{2})$

Faddeev-Yakubovski eq.

+ correct boundary conditions for components ψ_{α} !!! Special care to make for break-up!

Problems with Coulomb break-up: recently resolved for 3N system

IPN, Orsay

R. Lazauskas

Freestyle: phenomenological models

MT I-III (Malfliet-Tjon)

INOY (Doleschall) ...

Extreme sports: realistic potentials

Paris Nijmegen: Nijm I, <u>Nijm II, Reid</u> Urbana/Argonne: <u>Av.14, Av18</u> Bonn: Bonn B, CD Bonn, ...

Effective field theory (EFT) and Chiral perturbation theory (χPT)

Manufacture of parameters: to fit *NN* data (n-p and p-p). Description with $\chi^2_{data} \approx 1.01$ (*n~40 free parameters...*).

R. Lazauskas

NN interaction

f(x

✓ NN data: realistic potentials adjusted to describe it with $\chi^2 \approx 1.01$

Neutron-proton phase shifts up to N³LO

Where do we stand?

(Entem & Machleidt '03; E.E., Meißner & Glöckle '05)

IPN, Orsay

 \checkmark NN data: realistic potentials adjusted to describe it with $\chi^2 {\approx} 1.01$

✓ 3N bound state (problems starts)

	B(³ H); MeV	B(³ He); MeV
N3LO	7.84	
Nijm II	7.741	7.011
Av.18	7.616	6.914
AV.18+UIX	8.473	7.739
Doleschall	8.476	7.711
Exp.	8.482	7.718

Off-shell effects:

Where do we stand?

How strong is three-body force?

IPN, Orsay

 \checkmark NN data: realistic potentials adjusted to describe it with $\chi^2 \approx 1.01$

✓ 3N bound state (problems starts)

-	B(³ H); MeV	B(³ He); MeV
N3LO	7.84	
Nijm II	7.741	7.011
Av.18	7.616	6.914
AV.18+UIX	8.473	7.739
INOY04	8.476	7.711
Exp.	8.482	7.718

R. Lazauskas

How strong is three-body force

Off-shell effects:

IPN, Orsay

Where do we stand?

 \checkmark NN data: realistic potentials adjusted to describe it with $\chi^2 \approx 1.01$

✓ 3N bound state (problems starts)
✓ 3N scattering: many observables well described,

3NF effects are very small...

✓ deutron is large

IPN,

✓ Nd singlet scattering cross sections are very low

Where do we stand?

Orsav

 \checkmark NN data: realistic potentials adjusted to describe it with $\chi^2 {\approx} 1.01$

 ✓ 3N bound state (problems starts)
✓ 3N scattering: many observables well described, except A_v...

Bound states of heavier systems

R. Lazauskas

C. Pieper et al.: Phys. Rev. C 64 (2001) 014001; Phys. Rev. Lett. 89 (2002) 182501; Phys. Rev. C 66 (2002) 044310

- \checkmark NN data: realistic potentials adjusted to describe it with $\chi^2 {\approx} 1.01$
- \checkmark 3N bound state (problems starts)

R. Lazauskas

 ✓ 3N scattering: many observables well described, except A_{v...}

Where do we stand?

✓ 4N scattering: considerably more technically as well as structurewise

IPN

Orsav

3760

R. Lazauskas

IPN, Orsay

Diff. Cross sections

A. Deltuva, A. Fonseca: to appear in PRC

Weak and EM probes are very useful to test nuclear structure and interaction models:

$$\vec{\mu}_{f} = e \frac{i}{2} \left\langle \Psi_{f} \left| \lim_{|q| \to 0} \vec{\nabla}_{\vec{q}} \times \vec{J}(\vec{q}) \right| \Psi_{f} \right\rangle$$

$$\vec{J}_{v}(\vec{q}) = \vec{j}_{1B}(\vec{q}) + \vec{j}_{2B}(\vec{q}) + \vec{j}_{3B}(\vec{q}) + \dots$$

EM Processes

 $\vec{j}_{2B}(\vec{q}) = f(V_{NN})$ $\vec{j}_{3B}(\vec{q}) = f(V_{NNN})$

Derivation of EM current consistent with NN interaction using χ PT:

 k^2

R. Lazauskas

$$J_{12...n}(\vec{q}) = J_{12...n}(\vec{q}; r'_i s, p'_i s, \sigma'_i s, \tau'_i s) \qquad S_{\Lambda}(k^2) = e^{-2\Lambda^2}$$
$$= \int d\vec{x} e^{-i\vec{q}\cdot\vec{x}} \prod_{i=1}^n [\int \frac{d\vec{k}_i}{(2\pi)^3} e^{i\vec{k}_i \cdot (\mathbf{r}_i - \vec{x})} S_{\Lambda}(k_i^2)] J_{12...n}(\vec{k}_1, \vec{k}_2, \cdots, \vec{k}_n)$$

IPN

Orsav

	μ(² H)		M(np → d γ)	
	1-corp	Total	1-corp	Total
NLO	0.851-0.857	0.857-0.858	391-395	407.1-409.
Nijm II	0.8406	0.8581(3)	393.58	409.8(1)
Av.18	0.8402	0.8569(4)	393.2	409.4(1)
AV.18+UIX	0.8402	0.8601(3)	393.2	408.7(1)
Doleschall	0.8537	0.8561(1)	395.36	408.7(1)
Exp.		0.85744		409.9±0.5

For thermal neutron radiative capture on ³He meson exchange currents account 90% of transition amplitude!!!

EM Processes

- Small nuclear systems are crucial to understand nuclear interaction: progress in ab-initio treatment of nuclear reactions is slow but steady
- Resolution of 3N system is possible in all its complexity: small discrepancies with data suggest reveals lack of understanding in spin dependence of nuclear force
- 4N is in oven: stronger discrepancies with data, rich field for studying nuclear forces

Conclusions