Quantum Simulations

of warm dense hydrogen

C. Pierleoni, L'Aquila M. Morales and DMC, Illinois M. Holzmann, Paris K. Delaney, UCSB

- Why quantum Monte Carlo?
- Various QMC methods
- Some results in hydrogenic physics

Experimentally known High Pressure Phase Diagram of H

•Wigner-Huntington (1935) predicted that at high enough pressure hydrogen will become a metal.

•Experiments have not reached (definitively) that pressure.

MD and MC Simulations

- Initial simulations used semi-empirical potentials.
- Much progress with "ab initio" molecular dynamics simulations where the effects of electrons are solved for each step.
- However, the potential surface as determined by density functional theory is not always accurate enough
- How can we use the power of today's processors to enhance accuracy of simulations of real materials?

Could hydrogen be a quantum fluid like helium?

Hydrogen simulations

- Early MD work of Young 60's
- Band structure calculations of lattices
- Ceperley & Alder 1985 using QMC
- Natoli et al 1990
- Magro, Pierleoni, Militizer: PIMC 1995-2000
- Kohanof 1990
- Bonev, Galli, Gygi, Militzer : AIMD 2005
- CEIMC: Dewing, Pierleoni: 2004-2006

Short history of Quantum Computations

- Early days before computers:
 - Hartree, Slater, Hylleraas, Fock, Wigner, Seitz, Bardeen, Hellmann
- First scientific computer in Los Alamos (1950).
- QM scattering among first calculations in 1950
- Quantum chemistry actively developed in 50's
- Gaussian* programs started in 60's
- Density Functional Theory: * 1960-present
- Quantum Monte Carlo : McMillan(1965) and Kalos
- Car-Parrinello ab initio dynamics, 1985-realistic simulations

*Noble prize in chemistry to Pople and Kohn

Quantum Monte Carlo

- We need to use simulation techniques to "solve" many-body quantum problems just as you need them classically.
- Both the wavefunction and expectation values are determined by the simulations. Correlation built in from the start.
- QMC gives most accurate method for general quantum manybody systems.
- Ceperley-Alder electronic energy is a standard for approximate LDA calculations.
- Path Integral Methods provide a new understanding of superfluidity <u>and</u> a practical tool
- A continuum of stochastic methods:
 - Variational Monte Carlo
 - Projector Monte Carlo such as diffusion, reptation MC
 - Path Integral Monte Carlo for T>0
 - Coupled electron-ion Monte Carlo

QMC methods for Hydrogen

Variational Monte Carlo

(McMillan 1965)

- Put correlation directly into the wavefunction.
- Integrals are hard to do need MC.
- Take sequence of increasingly better wavefunctions.
- Can we make arbitrarily accurate functions? Method of residuals says how to do this.
- Recent progress with "backflow"
- No sign problem, and with classical complexity.
- Method for learning about the true trial function.

- Posit a wavefunction $\phi(\mathbf{R},\mathbf{a})$
- sample |φ(**R**,**a**)|² with random walk.
- minimize energy or variance of φ(**R**,**a**) with respect to **a**

 $\phi_{n+1}(R) \approx \phi_n(R) e^{-\langle \phi_n^{-1}H\phi_n \rangle}$

smoothing

Slater-Jastrow trial functions.

$$\Psi_{2}(R) = Det\{\phi_{k}(r_{j})\}e^{-\sum_{i < j} u_{ij}(r_{ij})}$$

- Orbital from a rescaled LDA calculation.
 - Reoptimization of trial functions is a major difficulty in time and reliability.
 - Requires a lengthy LDA calculation after each proton move.
- Trial functions used:
 - backflow + three body trial function are very successful for homogeneous systems. we generalized them to manybody hydrogen: no free parameters,
 - A single gaussian orbital/molecule works well in H_2 phase.
 - Fast band structure solver by removing e-p cusp and putting it into the Jastrow factor. Use plane wave basis and iterative methods. PW cutoff is minimized. Works in intermediate H-H₂ phase.

Trial functions.

- Slater-Jastrow function: $\Psi_2(R) = Det\{\phi_k(r_j)\}e^{-\sum_{i < j} u_{ij}(r_{ij})}$ with the orbital from a rescaled LDA calculation.
 - Reoptimization of trial functions during the CEIMC run is a major difficulty in time and reliability.
 - Requires a lengthy LDA calculation after each proton move.
- Trial functions used:
 - backflow + three body trial function are very successful for homogeneous systems. we generalized them to manybody hydrogen: no free parameters, but only works well for the atomic phase.
 - A single gaussian orbital/molecule works well in H_2 phase.
 - Fast band structure solver by removing e-p cusp and putting it into the Jastrow factor. Use plane wave basis and iterative methods. PW cutoff is minimized. Works in intermediate H-H₂ phase.

Generalized Feynman-Kac expression for wavefunction

- Suppose we start with the free particle function.
- Using method of residuals we can construct a sequence of increasingly better trial wave functions.

$$P_{n+1}(R) \approx \phi_n(R) e^{-\tau < \phi_n^{-1}H\phi_n >}$$

Smoothing by random walks
Linearized Feynman-Kac formula

- First order is Slater-Jastrow pair wavefunction.
- Second order is 3-body / backflow wavefunction
- Backflow improves the nodal surfaces, important for fixed-node methods.

Holzmann, DMC, Pierleoni & Esler, Phys. Rev. E 68, 046707:1-15(2003).

Backflow- 3B Wave functions

Backflow means change the coordinates to quasi-coordinates.

Three-body form is like a squared force.

Consider a single electron in a lattice of protons. With exact diagonalization find: $\varphi_k(\mathbf{r})$

Then relate to the backflow function.

Band energy with BF trial function

- Error in band energy goes as k⁴ instead of k²
- Very accurate wavefunction near the Γ point.
- Bad near the zone boundary because it doesn't know about the lattice symmetry.
- Backflow functions are parameterfree, derived from many-body perturbation theory.
- Almost as accurate as band-theory based orbitals for liquid metallic H (accurate to 100K).

Analytic 3Body-backflow

- Start with analytic Slater-Jastrow using Gaskell trial function
- Apply Bohm-Pines collective coordinate transformation and express Hamiltonian in new coordinates
- Diagonalize resulting hamiltonian.
- Long-range part is Harmonic oscillator which can be solved
- Expand about k=0 to get backflow and 3body forms.
- Significant long-range component to BF

OPTIMIZED BF

ANALYTIC BF

 $\Psi_{2}(R) \exp \{\sum_{i} \vec{\nabla}_{i} W_{y}(R) \vec{\nabla}_{i} W_{u}(R)\}$

Projector Monte Carlo

aka Green's function MC, Diffusion MC

- Automatic way to get better wavefunctions.
- Project single state using the Hamiltonian

$$\phi(t) = e^{-(\mathrm{H-E})t}\phi(0)$$

- This is a diffusion + branching operator.
- Very scalable: each walker gets a processor.
- But is this a probability?
- Yes! for bosons since ground state can be made real and non-negative. But all <u>excited states</u> must have sign changes.
- In exact methods one carries along the sign as a weight and samples the modulus. This leads to the famous sign problem

$$\phi(t) = e^{-(H-E)t} \operatorname{sign}(\phi(R,0)) | \phi(R,0) |$$

Fixed-node method

- Initial distribution is a pdf. It comes from a VMC simulation. $f(R,0) = |\psi_T(R)|^2$
- Drift term pushes walks away from the nodes.
- Impose the condition:
- This is the fixed-node BC

 $\phi(R) = 0$ when $\psi_T(R) = 0$.

- Will give an upper bound to the $E_{FN} \ge E_0$ exact energy, the best upper bound consistent with the FNBC. $E_{FN} = E_0$ if $\phi_0(R)\psi(R) \ge 0$ all R
- •f(R,t) has a discontinuous gradient at the nodal location.
- •Accurate method because Bose correlations are done exactly.
- •Scales well, like the VMC method, as N³. *Classical complexity.*

DMC predictions of T=0 structures

Predicted I-II transition

- Problem with p-e "timescales"
- •What about T>0?

PIMC: Imaginary-time path integrals

The density matrix is:

$$\hat{\rho} = e^{-\beta(\bar{T} + \bar{V})}$$

• Trotter's theorem (1959):

$$\hat{\rho} = \lim_{M \to \infty} \left[e^{-\tau F} e^{-\tau F} \right]^M$$

• n is number of time slices. $\tau = \beta / M$

• Then:

$$Z = \int dR_{1} ... dR_{M} e^{-\sum_{i=1}^{M} S(R_{i}, R_{i+1}; \tau)}$$

Where the primitive link action is:

$$S(R_0, R_1; \tau) = -\frac{3N}{2} \ln(4\pi\lambda\tau) + \frac{(R_0 - R_1)^2}{4\lambda\tau} + \frac{\tau}{2} \left[V(R_0) + V(R_1) \right]$$

- Analogous to a classical problem where each particle turns into a "polymer."
- Trace implies $R_0 = R_M \Rightarrow$ closed or ring polymers

"Distinguishable" particles within PIMC

 \mathbb{A}

- Each atom is a ring polymer; an exact representation of a quantum wavepacket in imaginary time.
- Integrate over all paths with Monte Carlo
- Trace picture: The dots represent the "start" of the path.
- The lower the real temperature, the longer the "string" and the more spread out the wavepacket.
- Difficulty getting down to "low" temperatures

Low Density Molecular Fluid

Hydrogen

T = 5000 K

 $r_{s} = 4.0$

Molecular Metallic liquid

Deuterium

T = 5000 K

 $r_{s} = 1.86$

Ionized Fermi Liquid

Deuterium

T=6250K

 $r_{s} = 1.60$

Experiment vs PIMC/DFT simulations

- Older laser (NOVA) shocks are incompatible with microscopic theory.
- Chemical models are not predictive in this regime.
- Z-pinch experiments of *Knudsen et al., PRL 87, 225501* (2001)

Deuterium Hugoniot

Coupled Electron-Ionic Monte Carlo: CEIMC

- 1. Do Path Integrals for the ions at T>0.
- 2. Let electrons be at zero temperature, a reasonable approximation for room temperature simulations.
- 3. Use Metropolis MC to accept/reject moves based on QMC computation of electronic energy

•What about the "noise" coming from electronic energy?

The Penalty method

DMC & Dewing, J. Chem. Phys. 110, 9812(1998).

• Assume <u>estimated</u> energy difference Δe is normally distributed* with variance σ^2 and the correct mean.

$$< \Delta e > = \Delta E$$

$$< [\Delta e - \Delta E]^2 > = \sigma^2$$

*central limit theorem for $\sigma < \infty$

- $a(\Delta e; \sigma)$ is acceptance ratio.
- average acceptance $A(\Delta E) = \langle a(\Delta e) \rangle$
- detailed balance: $A(\Delta E) = exp(-\Delta E) A(-\Delta E)$
- An exact solution is: $a(x,\sigma) = min [1, exp(-x \sigma^2/2)]$
- σ²/2 is "penalty"
- Large noise (order k_BT) is more efficient than low noise, because the QMC is so much faster.

An advantage of Monte Carlo:

Averages are almost free.

$$E(s) = \frac{1}{M} \sum_{i=1}^{M} E(s;q_i)$$

- 1. Path Integrals for ions (particularly for protons or light ions) (M time slices to average over.)
- k-point sampling (integrate over Brillouin zone of supercell). Twist averaged boundary conditions converge much faster than periodic boundary conditions for metals. (M k-points)
- In explicit methods such as LDA, these extra variables will increase the CPU time by a factor M.
- With QMC there will be little increase in time if imaginary time and/or k are simply new variables to <u>average over</u>.
 Except for startup time, it just increases dimensionality of integral.
- We assign different values of phases and imaginary time to different processors.

Twist averaged boundary conditions

- In periodic boundary conditions, the wavefunction is periodic⇒Large finite size effects for metals because of fermi surface.
- In twist averaged BC, we use an arbitrary phase $\theta~$ as r $\rightarrow r+L$
- Integrate over all phases, i.e. Brillouin zone integration.
- Momentum distribution changes from a lattice of k-vectors to a fermi sea.
- Eliminates single-particle finite-size effects.
- Makes 54 atoms much closer to thermodynamic limit.

$$\Psi(x+L) = e^{i\theta}\Psi(x)$$
$$\overline{A} = \frac{1}{(2\pi)^3} \int_{-\pi}^{\pi} d^3\theta \left\langle \Psi_{\theta} A \Psi_{\theta} \right\rangle$$

- Make a move of the protonic paths
- Partition the 4D lattice of boundary conditions (θ_x θ_y θ_z) and imaginary time (τ) in such a way that each variable is uniformly sampled (stratified)
- Budge twist angles
- Send them all out to M separate processes
- Do reptation QMC to get energy differences and variances
- Combine to get global difference and variance.

$$\theta_{\rm x}$$
$$\Delta E_{BO} = \frac{1}{M} \sum E_{\theta,\tau}$$

 $\sigma^{2} = \frac{1}{M^{2}} \sum \sigma^{2}_{\theta,\tau}$

Agreement with the PIMC calculations for metallic hydrogen.

r _s	V(cc/mol)	T(K)	Pressure (Mbar)				
			Gasgun	S-C	S-G	CEIMC-VMC	CEIMC-DMC
2.100	6.92	4530	0.234	0.213	0.201	0.226(4)	0.225(3)
2.202	7.98	2820	0.120	0.125	0.116	0.105(6)	0.10(5)
1.800	4.36	3000	-	-	0.528	-	0.433(4)

•Comparison of g(r) between CEIMC and Car-Parrinello MD.

•Reasonable agreement between methods.

Why liquid? Screened Coulomb potential

K.K. Mon et al, Phys. Rev. B 21,2641 (1980) *DMC et al. Phys. Rev. B* 16, 3081 (1976)

Zero temperature QMC calculations

The linear response p-p potential misses a lot!

Figure 4. The energy difference between an atomic liquid and an atomic crystal (times $1000r_s^2$). The upper curve with error bars is from a GFMC calculation of a two component system of electron and protons while the lower curve is from a GFMC calculation of proton system where the electrons screen the bare proton-proton coulomb interaction.

K.K. Mon et al, Phys. Rev. B 21,2641 (1980) DMC et al. Phys. Rev. B 16, 3081 (1976) DMC and B.J. Alder, Phys. Rev. B 36, 2092 (1987). DMC in" Simple Molecular Systems at Very High Density", ed. A. Polian, et al.,1989.

Two Possible Phase Diagrams

Ashcroft suggested a low temperature liquid metallic ground state. •Does the liquid go to T=0K?

How low in temperature is needed to see quantum protonic transitions?How about electronic superconductivity?

Melting of atomic solid using CEIMC

CEIMC predicts T_{melt}>500K.

Pierleoni, Holtzmann, DMC, PRL 93,146402 (2005).

•Temperature dependence in LDA is off by 100%.

•This effect also seen in Natoli et al. calculation of various metallic hydrogen crystal structures and for liquid H_2 structures.

•In LDA (and some other functionals) energy landscape is too flat!

CEIMC vs CPMD: R_s=1, T=1000K

Plasma Phase Transition

- Study nature of transition from molecular to non-molecular fluid using CEIMC
- Simulations at *T*=2000*K* with *P*=50-200*GPa*

CEIMC(VMC) Simulations

- Look at proton-proton correlation function
- Clear bonding peak.
- Circles: simulations started from molecular fluid
- Crosses: from non-molecular fluid

Hysteresis in H-H₂ transition.

Energy from VMC

- •32 atoms
- •216 twist angles

Collection of gpp(r)s for T=2000K using VMC

CEIMC (DMC energy) Simulations

- •VMC: Hysteresis; probably 1st order transition.
- •RQMC: No hysteresis; continuous transition.
- •VMC trial function has difficulty with the mixed H_2 -H state.

Collection of gpp(r)s for T=2000K using RQMC

$$g(r) = \lambda g_{mol}(r) + (1 - \lambda)g_{nonmol}(r)$$

SIGN PROBLEM Model: Particle in a box

Symmetric potential: $V(\mathbf{r}) = V(-\mathbf{r})$ Antisymmetric state: $\phi(\mathbf{r}) = -\phi(-\mathbf{r})$

Negative walkers

Sign of walkers fixed by initial position. They are allowed to diffuse freely. $\phi(r)$ = number of positive-negative walkers. Node is dynamically established by diffusion process. (cancellation of positive and negative walkers.)

Scaling in Released-Node Initial distribution Later distribution Image: Control of the second seco

- At any point, positive and negative walkers will tend to cancel so the signal is overwhelmed by the fluctuations.
- Signal/noise ratio is : $e^{-t[E_F E_B]} = t = projection time$ E_F and E_B are Fermion, Bose energy (proportional to N)
- Converges but at a slower rate. Higher accuracy, larger t.
- For general excited states: **Exponential complexity!** CPUtime $\propto \varepsilon^{-2(1+\frac{\mathbf{E}_{\mathbf{F}}}{\mathbf{E}_{\mathbf{g}}})} \approx \varepsilon^{-2\mathbf{N}\frac{\mathbf{e}_{\mathbf{F}}}{\mathbf{E}_{\mathbf{g}}}}$
- Not a fermion problem but an *excited state problem*.

General statement of the "fermion problem"

- Given a system with N fermions and a known Hamiltonian and a property O (usually the energy):
 - How much time **T** will it take to estimate **O** to an accuracy ε?
 - How does T scale with N and ε?
- If you can map the quantum system onto an equivalent problem in classical statistical mechanics then:

T
$$\propto$$
 N $\alpha \varepsilon^{-2}$ With $0 < \alpha < 3$

This would be a "solved" quantum problem!

- •All approximations must be controlled!
- •Algebraic scaling in N!

e.g. properties of Boltzmann or Bose systems in equilibrium.

Can we solve the problem of continuum electrons in the presence of ions?

SUMMARY

- No existing fermion methods are perfect but QMC today is competitive with other methods and usually much more accurate.
- Progress in "ab initio" simulations in last 40 years, coming from both
 - Computer power
 - Algorithmic power
- We are now in position to do much more accurate simulation of hydrogen, helium,...
- This is a great problem to solve. Intellectually and technologically very important. More work needed in algorithms to get higher accuracy, treat larger systems, heavier elements allowing:
 - benchmarking to validate cheaper approaches
 - replace more approximate approaches.