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• Why quantum Monte Carlo?
• Various QMC methods
• Some results in hydrogenic physics 



•Wigner-Huntington (1935) predicted that at high enough pressure  
hydrogen will become a metal.  
•Experiments have not reached (definitively) that pressure.

Experimentally known High Pressure Phase Diagram of  H

H2 Bond-ordered phase
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shock



MD and MC Simulations
–Hard sphere MD/MC   ~1953  (Metropolis, Alder)

–Empirical potentials (e.g. Lennard-Jones)  ~1960  
(Verlet, Rahman)

–Local density functional theory ~1985 (Car-Parrinello)

–Quantum Monte Carlo  (CEIMC) ~2000

• Initial simulations used semi-empirical potentials.
• Much progress with “ab initio” molecular dynamics simulations 

where the effects of electrons are solved for each step.
• However, the potential surface as determined by density 

functional theory is not always accurate enough
• How can we use the power of today’s processors to enhance 

accuracy of simulations of real materials?



A quantum fluid of metallic hydrogen suggested by first-
principles calculations S. A. BONEV, E. SCHWEGLER, T. OGITSU 
& G. GALLI

A superconductor to superfluid phase transition in 
liquid metallic hydrogen E. BABAEV, A. SUDBØ & 

N. W. ASHCROFT

07 October 2004

Liquid H2

hcp H2

Liquid H

Could hydrogen be a quantum fluid like helium?



Hydrogen simulations
• Early MD work of Young 60’s
• Band structure calculations of lattices
• Ceperley & Alder 1985 using QMC
• Natoli et al 1990 
• Magro, Pierleoni, Militizer: PIMC 1995-2000 
• Kohanof 1990
• Bonev, Galli, Gygi, Militzer : AIMD 2005
• CEIMC: Dewing, Pierleoni: 2004-2006 



Short history of Quantum 
Computations

• Early days before computers:
– Hartree, Slater, Hylleraas , Fock, Wigner, Seitz,  

Bardeen, Hellmann
• First scientific computer in Los Alamos (1950).
• QM scattering among first calculations in 1950
• Quantum chemistry actively developed in 50’s
• Gaussian* programs started in 60’s
• Density Functional Theory: * 1960-present
• Quantum Monte Carlo : McMillan(1965) and Kalos
• Car-Parrinello ab initio dynamics, 1985-realistic 

simulations

*Noble prize in chemistry to Pople and Kohn



Quantum Monte CarloMonte Carlo

• We need to use simulation techniques to “solve” many-body 
quantum problems just as you need them classically.

• Both the wavefunction and expectation values are determined 
by the simulations. Correlation built in from the start.

• QMC gives most accurate method for general quantum many-
body systems. 

• Ceperley-Alder electronic energy is a standard for 
approximate LDA calculations. 

• Path Integral Methods provide a new understanding of 
superfluidity and a practical tool

• A continuum of stochastic methods:
– Variational Monte Carlo
– Projector Monte Carlo such as diffusion, reptation MC
– Path Integral Monte Carlo  for T>0
– Coupled electron-ion Monte Carlo



QMC methods for Hydrogen

Path Integral MC for 
T > EF/10

Diffusion MC T=0

Coupled-electron Ion 
MC

Path Integral MC with 
an effective potential



Variational Monte CarloVariational Monte Carlo
(McMillan 1965)(McMillan 1965)

• Put correlation directly into 
the wavefunction.

• Integrals are hard to do need 
MC.

• Take sequence of increasingly 
better wavefunctions. 

• Can we make arbitrarily 
accurate functions? Method 
of residuals says how to do 
this.

• Recent progress with 
“backflow”

• No sign problem, and with 
classical complexity.

• Method for learning about the 
true trial function.

• Posit a wavefunction φ(R,a)
• sample |φ(R,a)|2 with           

random walk.
• minimize energy or variance of 

φ(R,a) with respect to a
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Slater-Jastrow trial functions.
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• Orbital from a rescaled LDA calculation.
– Reoptimization of trial functions is a major difficulty in 

time and reliability.
– Requires a lengthy LDA calculation after each proton 

move.
• Trial functions used:

– backflow + three body trial function are very successful for 
homogeneous systems. we generalized them to many-
body hydrogen: no free parameters, 

– A single gaussian orbital/molecule works well in H2 phase.
– Fast band structure solver by removing e-p cusp and 

putting it into the Jastrow factor. Use plane wave basis 
and iterative methods. PW cutoff is minimized. Works in 
intermediate H-H2 phase.



Trial functions.

• Slater-Jastrow function:
with the orbital from a rescaled LDA calculation.
– Reoptimization of trial functions during the CEIMC run is a 

major difficulty in time and reliability.
– Requires a lengthy LDA calculation after each proton 

move.
• Trial functions used:

– backflow + three body trial function are very successful for 
homogeneous systems. we generalized them to many-
body hydrogen: no free parameters, but only works well 
for the atomic phase.

– A single gaussian orbital/molecule works well in H2 phase.
– Fast band structure solver by removing e-p cusp and 

putting it into the Jastrow factor. Use plane wave basis 
and iterative methods. PW cutoff is minimized. Works in 
intermediate H-H2 phase.
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Generalized Feynman-Kac expression for 
wavefunction

• Suppose we start with the free particle function. 
• Using method of residuals we can construct a sequence of 

increasingly better trial wave functions. 

• First order is Slater-Jastrow pair wavefunction.
• Second order is 3-body /  backflow wavefunction
• Backflow improves the nodal surfaces, important for fixed-node 

methods.

Holzmann, DMC, Pierleoni & Esler, Phys. Rev. E 68, 046707:1-15(2003).
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Smoothing by random walks
Linearized Feynman-Kac formula



Backflow- 3B Wave functions
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Backflow means change the 

coordinates to quasi-
coordinates. 

Three-body  form is like a 
squared force.
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Consider a single electron in a 
lattice of protons. With exact 
diagonalization find:

Then relate to the backflow 
function.
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Band energy with BF trial function
• Error in band energy goes as k4

instead of k2

• Very accurate wavefunction near 
the Γ point.  

• Bad near the zone boundary 
because it doesn’t know about 
the lattice symmetry.

Backflow functions are parameter-
free, derived from many-body 
perturbation theory.

Almost as accurate as band-theory 
based orbitals for liquid metallic 
H (accurate to 100K).

No BF

BF



Analytic 3Body-backflow
• Start with analytic Slater-Jastrow using Gaskell trial function
• Apply Bohm-Pines collective coordinate transformation and express Hamiltonian 

in new coordinates
• Diagonalize resulting hamiltonian. 
• Long-range part is Harmonic oscillator which can be solved
• Expand about k=0 to get backflow and 3body forms.
• Significant long-range component to BF

OPTIMIZED BF                          ANALYTIC BF

• 3-body term is non-symmetric!
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Projector Monte CarloProjector Monte Carlo
aka Green’s function MC, Diffusion MC

• Automatic way to get better wavefunctions.
• Project single state using the Hamiltonian

• This is a diffusion + branching operator.
• Very scalable: each walker gets a processor.
• But is this a probability?  
• Yes! for bosons since ground state can be made real 

and non-negative. But all excited states must have sign 
changes.

• In exact methods one carries along the sign as a weight 
and samples the modulus.  This leads to the famous 
sign problem
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Fixed-node method
• Initial distribution is a pdf.  

It comes from a VMC simulation.
• Drift term pushes walks away 

from the nodes.
• Impose the condition:
• This is the fixed-node BC

• Will give an upper bound to the 
exact energy, the best upper 
bound consistent with the FNBC.
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•f(R,t) has a discontinuous gradient at the nodal location.

•Accurate method because Bose correlations are done exactly. 

•Scales well, like the VMC method, as N3. Classical complexity.



DMC  predictions of T=0 structures

DMC and BJ Alder, Phys Rev 1985.
Natoli, V., Martin, R. M. and DMC, Phys. Rev. Lett. 70 ,1952 (1993).

•Predicted I-II transition

•Problem with p-e “timescales”

•What about T>0?



PIMC: Imaginary-time path integrals
The density matrix is:

• Trotter’s theorem (1959):

• n is number of time slices.

• Then:

Where the primitive link action is:

• Analogous to a classical problem where each particle 
turns into a “polymer.”

• Trace implies R0=RM closed or ring polymers
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“Distinguishable” particles  within PIMC

• Each atom is a ring 
polymer; an exact 
representation of a 
quantum wavepacket
in imaginary time.

• Integrate over all 
paths with Monte Carlo

• Trace picture: The 
dots represent the 
“start” of the path. 

• The lower the real 
temperature, the 
longer the “string” and 
the more spread out 
the wavepacket.

• Difficulty getting down 
to “low” temperatures



Low Density Molecular Fluid

Hydrogen

T=5000K

rs=4.0 



Molecular Metallic liquid

Deuterium

T=5000K

rs=1.86



Ionized Fermi Liquid

Deuterium

T=6250K

rs=1.60



Experiment vs PIMC/DFT simulations

• Older laser 
(NOVA) shocks 
are incompatible 
with microscopic 
theory.

• Chemical models 
are not predictive 
in this regime.

• Z-pinch 
experiments of 
Knudsen et al., 
PRL 87, 225501 
(2001)

3eV

1.5eV

1.0eV

0.7eV

T



Coupled Electron-Ionic Monte Carlo:CEIMC 

1. Do Path Integrals for the ions at T>0.

2. Let electrons be at zero temperature, a reasonable 
approximation for room temperature simulations.

3. Use Metropolis MC to accept/reject moves based on 
QMC computation of electronic energy

.
electrons

ions

R

S ⇒ S*

•What about the “noise” coming from electronic energy?



The Penalty method
DMC & Dewing, J. Chem. Phys. 110, 9812(1998).

• Assume estimated energy difference ∆e is normally 
distributed* with variance σ2 and the correct mean. 

< ∆e > = ∆E
< [∆e- ∆E]2 > = σ2

*central limit theorem for σ<∞
• a(∆e; σ) is acceptance ratio.
• average acceptance A(∆E) = < a(∆e) >
• detailed balance:  A(∆E) = exp (- ∆E ) A(-∆E) 
• An exact solution is: a(x,σ) = min [ 1, exp(-x- σ2/2)]
• σ2/2 is  “penalty”
• Large noise (order kBT) is more efficient than low noise, 

because the QMC is so much faster.



An advantage of Monte Carlo:

Averages are almost free.
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1. Path Integrals for ions (particularly for protons or light 

ions)  (M time slices to average over.)
2. k-point sampling (integrate over Brillouin zone of 

supercell). Twist averaged boundary conditions converge 
much faster than periodic boundary conditions for 
metals.   (M  k-points)

• In explicit methods such as LDA, these extra variables will 
increase the CPU time by a factor M.  

• With QMC there will be little increase in time if  imaginary 
time and/or k are simply new variables to average over. 
Except for startup time, it just increases dimensionality of 
integral.

• We assign  different values of phases and imaginary time to 
different processors.



Twist averaged boundary conditions
• In periodic boundary conditions, the wavefunction is 

periodic⇒Large finite size effects for metals because of 
fermi surface.

• In twist averaged BC, we use an arbitrary phase θ as r 
→r+L

• Integrate over all phases, i.e. Brillouin zone integration.
• Momentum distribution changes from a lattice  of k-

vectors to a fermi sea.
• Eliminates single-particle finite-size effects.
• Makes 54 atoms much closer to thermodynamic limit.
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Error is zero in the grand 
canonical ensemble at 
the mean field level.
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• Make a move of the protonic paths
• Partition the 4D lattice of 

boundary conditions (θx θy θz) and 
imaginary time (τ) in such a way 
that each variable is uniformly 
sampled (stratified)

• Budge twist angles
• Send them all out to M separate 

processes 
• Do reptation QMC to get energy 

differences and variances
• Combine to get global difference 

and variance. 
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Agreement with the PIMC calculations for metallic hydrogen.



Results for

Molecular H2

M. Dewing’s
thesis (2000)

•Comparison of g(r) between CEIMC and Car-Parrinello MD.

•Reasonable agreement between methods.



Why liquid?
Screened Coulomb potential

Electrons screen p-p 
interaction ( )
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K.K. Mon et al, Phys. Rev. B 21,2641 (1980)
DMC et al. Phys. Rev. B 16, 3081 (1976)



Zero temperature QMC calculations

Calculations show T=0 
energy to liquify

•e-p system

•Effective p-p potential

The linear response p-p 
potential misses a lot!

sr

liquid solidE E−

K.K. Mon et al, Phys. Rev. B 21,2641 (1980)
DMC et al. Phys. Rev. B 16, 3081 (1976)
DMC and B.J. Alder, Phys. Rev. B 36, 2092 (1987). 
DMC in” Simple Molecular Systems at Very High Density”, ed. A. Polian, et al.,1989. 



Two Possible Phase Diagrams

Solid H
Solid H

liquid H
liquid H

Ashcroft suggested a low temperature liquid metallic ground state.
•Does the liquid go to T=0K?

•How low in temperature is needed to see quantum protonic transitions?
•How about electronic superconductivity?



Melting of atomic solid using CEIMC

CEIMC predicts Tmelt>500K.

Pierleoni, Holtzmann, DMC, PRL 93,146402 (2005).



•Temperature dependence 
in LDA is off by 100%.

•This effect also seen in 
Natoli et al. calculation of 
various metallic hydrogen 
crystal structures and for 
liquid H2 structures. 

•In LDA (and some other 
functionals) energy 
landscape is too flat!



Plasma Phase Transition

• Study nature of transition from molecular to non-molecular 
fluid using CEIMC

• Simulations at T=2000K with P=50-200GPa



CEIMC(VMC) Simulations

• Look at proton-proton correlation 
function

• Clear bonding peak.

• Circles: simulations started from 
molecular fluid

• Crosses: from non-molecular fluid

Hysteresis in H-H2 transition.

Energy from VMC 

•32 atoms

•216 twist angles



CEIMC (DMC energy) Simulations

( ) ( ) ( )rgrgrg nonmolmol λλ −+= 1)(

•VMC: Hysteresis; probably 1st

order transition.

•RQMC: No hysteresis; 
continuous transition.

•VMC trial function has difficulty 
with the mixed H2-H state.

H2 order parameter



SIGN PROBLEMSIGN PROBLEM
Model: Particle in a boxModel: Particle in a box

Symmetric potential: V(r) =V(-r) 
Antisymmetric state:  φ(r)=-φ(-r)

Initial (trial) state Final (exact) state
Positive walkers

Negative walkers

Node

Sign of walkers fixed by initial position. They are allowed to diffuse freely.
φ(r)= number of positive-negative walkers. Node is dynamically established 
by diffusion process. (cancellation of positive and negative walkers.)



Scaling in ReleasedScaling in Released--NodeNode
Initial distribution Later distribution

• At any point, positive and negative walkers will tend to 
cancel so the signal is overwhelmed by the fluctuations.

• Signal/noise ratio is : t=projection time
EF and EB are Fermion, Bose energy (proportional to N)

• Converges but at a slower rate. Higher accuracy, larger t.
• For general excited states:

Exponential complexity!
• Not a fermion problem but an excited state problem.
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General statement of the General statement of the 
““fermion problemfermion problem””

• Given a system with N fermions and a known Hamiltonian and a 
property O  (usually the energy):
– How much time T will it take to estimate O to an accuracy ε? 
– How does T scale with N and ε?

• If you can map the quantum system onto an equivalent problem 
in classical statistical mechanics then:

2NT −∝ εα With 0 <α < 3 

This would be a “solved” quantum problem!
•All approximations must be controlled! 
•Algebraic scaling in N!
e.g.  properties of Boltzmann or Bose systems in equilibrium.

Can we solve the problem of continuum electrons in the 
presence of ions?



SUMMARY

• No existing fermion methods are perfect but QMC today 
is competitive with other methods and usually much 
more accurate.

• Progress in “ab initio” simulations in last 40 years,  
coming from both
– Computer power
– Algorithmic power

• We are now in position to do much more accurate 
simulation of hydrogen, helium,…

• This is a great problem to solve. Intellectually and
technologically very important. More work needed in 
algorithms to get higher accuracy, treat larger systems, 
heavier elements allowing:
– benchmarking to validate cheaper approaches
– replace more approximate approaches.
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