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I. INTRODUCTION

Basic theoretical ab-initio methods

Central field (radial potential)

Hartree-Fock method

Average Atom

Tensor Operators

Second Quantization

Statistical distributions



Central field

In Slater’s approach, an atom is a sphere, centered at
which is the center of symmetry of the system. 

The simplest form of the Hamiltonian 
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Central field (cont’d)

Zeroth-order solutions :

the configurational states, which gather into degenerate electronic 
configurations. These states are made of angular and spin functions,
and of radial functions.

Higher-order solutions :

the states obtained by diagonalizing the H matrix  
- for one configuration (this is a calculation of intermediate coupling) 
- for several configurations (this is a calculation of configuration interaction).

An approximate ab-initio V(r) radial potential is generally obtained through the 
variational optimization of an expansion in terms of Slater basis functions rn e-αr. 

The central-field model can be chosen to be relativistic o



Tensor operators, and graphical methods

The tensor-operator methods have been invented by Gi
and fully explained, and extended by Brian R. Judd. They 
the angular and spin parts of the configurational states,
computation of the corresponding matrix elements of the o

For very complicated cases, it is convenient to 
use the graphical
methods developed by A. P. Jucys et al.



Second-Quantization formalism

The Second-Quantization formalism has been adapted
Physics by Brian R. Judd. In his version, the well-known 
annihilation operators do not relate to photons, or to nu
electrons.

This formalism is extremely efficient for the calcu
quantities, e.g., moments of statistical distributions, su
subspaces, or averages, or correlation factors.



II. STATICS

Statistics of configuration states and leve

An electronic configuration is denoted (nl)N

(n’l’)N’ (n’’l’’)N’’ … , i.e.,
a suite of open subshells (nl)N. Each of its quantum 

states corresponds
to a pair of quantum numbers (J, MJ) which are, in h

units, the values
of the total angular momentum J and of its projection 

on the z axis,
respectively. The degeneracy of each J level is equal 
to (2J+1).

It is remarkable that the number of IαJMJ) states of the 
configuration, for example, is the well-known combinatorial factor,

whereas no simple formula has yet been found for the 
number of J levels. However, the statistical distribution of

the J values is related to the derivative vs MJ of that of the MJ values,
which can be expressed as a Gram-Charlier distribution, whose moments
are computed exactly.
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tistics of configuration states and levels (cont

The Gram-Charlier distribution function of MJ (denoted 
M) in the (l)N configuration reads

D (M) = g (2πv)-1/2 exp (- M2/2v)  [1 + (α4 – 3) (3 – 6M2/v + M4/v2)/24 + … ]

with the distribution moments µn (M) = Σi Mi
n / g

µ2 (the variance v) = N(4l - N +2) (4l2 + 4l +3) / (4l + 1)

µ4 = N(4l - N +2) [N(4l - N +2) x(l) + y(l)]

(where x(l) and y(l) are polynomials in l)

and the kurtosis coefficient α4 = µ4 / (µ2)2.



Configuration  levels



J distribution  of the levels  of 
configurations
Example:  4f 55d



Transition arrays

A transition array is the ensemble of the radiativ
which link two configurations.



Transition  array



Lanthanum  spectrum



The Unresolved Transition Array (UTA) model

In most arrays, the linewidths and the spectral de
lines are large enough for the line profiles to coalesce
continuous band. That band can be simulated as a Gaussian
(or skewed-Gaussian) feature, using the analytical expans
the strength-weighted two (or three) lowest-order moments
line wavenumbers. 





NUMBERS  OF LINES  IN TRANSITION  ARRAYS

Transition
array Number

Stat.

of lines
Exact

Relative
error  (%)

p3 - p2s 37 35 +5.5 
d9 - d8p 59 60 -1.7
d8 - d7f 728 721 +1.0
d8p - d8d’ 1 574 1 554 +1.3
d4 - d3p 1 741 1 718 +1.3
f 3s2 - f 3sp 7 429 7 402 +0.4
f 13d2s - f 13dsp 16 027 15 821 +1.3
d7f - d6fp 162 289 160 887 +0.9
f 8 - f 7d 279 112 277 827 +0.5
d6f  - d5f 2 293 376 291 521 +0.6



Statistics of strengths in a transition array

Porter and Thomas have proved that the radiative a
of the lines nearly obey a Poisson distribution (the stre
to a2).

This agrees with the fact that most (allowed) line
array are very weak. 



Amplitude  distribution in Fe4+ 3d4 - 3d34p

|a|



Emissive  zones



Configuration interaction effects between 
UTAs

It may happen that a configuration is linked radia
other ones, which are mixed by the residual Hamiltonian H
energies are perturbed very little (to the second order o
but the strengths are perturbed to the first-order. There
possible to predict the qualitative (and quantitative) ch
UTAs without diagonalizing Hr .



Configuration-interaction  effects

Pr XXII    4p6 4d2 – ( 4p5 4d3 + 4p6 4d 4f )

4p6 4d2

4p5 4d3

4p6 4d 4f

A
B

D



The Spin-Orbit-Split-Array (SOSA) model

It may happen that the spin-orbit 
interactions are so large that 
the UTA Gaussian feature is split into two or three 
smaller ones,
called sub-arrays. Other specific global formulas 
can be used,
in pure j-j coupling. 



The 3d84s – 3d84p  array



The Resolved Transition Array (RTA) model

For computing the monochromatic absorption, a 
smooth curve like the Gaussian functions of the UTA 
model ought to be replaced by a line-by-line model, 
because the gaps between the lines are essential 
data. For achieving an RTA model, one uses the same 
energy variance and total strength as for the 
relevant UTA. The individual-line characteristics 
are picked at random in the following joint triple 
distribution of the upper and lower level energies E 
and E’, and of the line amplitudes a:D(E, E’, a) = N exp(- E2/2v – E’2/2v’ – λ a2)

where v and v’ are the energy variances of the 
configurations,
and λ is a correlation factor.



Correlation between energies and strengths 
The propensity law

In most C1 – C2 transition arrays, the 
higher (lower) levels of C1 are more strongly 
linked to the higher (lower) levels of C2.



The more intense lines are closer
to the center of the array

Exact
line-by-line
calculation

statistical
calculation,

without
correlation



RTA model: the Iron absorption spectrum (T=20 
eV)

ρ = 10-4 g/cc

ρ = 10-3 g/cc ρ = 10-2 g/cc



III. DYNAMICAL EQUILIBRIUM

The Local Thermodynamical Equilibrium (LTE)

Four simple laws, from Statistical Mechanics, are 
enough for calculating the populations of all the 
levels of all the ions .

1) Planck’s law (the radiation spectral 
distribution)

2) Maxwell’s law (the free-particle kinetic-
energy distribution)

3) Boltzmann’s law (the populations of the J 
levels)

4) Saha’s law (the populations of the ions)



The Local Thermodynamical Equilibrium (LTE)
(cont’d)

n the LTE plasma conditions, the population of each aJ level

N(αJ) =  (2J + 1) N exp [ - ∆E(αJ) / kTe ]

where N is a calibration factor and ∆E(αJ) is the energy of
level referred to the ground level of the relevant ion. A
properties can be deduced.

However, when too many levels are involved, it is mor
to achieve the calculations by using configurations, or e
superconfigurations. Codes like STA and SCO have been wri
that purpose.



Definition of superconfigurations

A superconfiguration is the totality of all the co
electrons possess the same ensemble of principal quantum nu
For example,

(3)2 represents all the two-electron configurations wi

3s2

3s3p 
3s3d
3p2

3p3d 
3d2



Superconfigurations  in  Xe  (Fe-like)

(3)16 6  configurations

(3)15 (4)1 36  configurations (3)14 (4)2 120  configurations 
(3)15 (5)1 45  configurations (3)14 (4)1 (5)1 240  configurations
(3)15 (6)1 54  configurations (3)14 (4)1 (6)1 288  configurations
(3)15 (7)1 63  configurations (3)14 (4)1 (7)1 336  configurations
(3)15 (8)1 72  configurations            (3)14 (4)1 (8)1 384  configurations

(3)14 (5)2 180  configurations
(3)14 (5)1 (6)1 360  configurations

(3)14 (6)2  252  configurations
2436 configurations

5 700 000 levels

(n)N :  N electrons in the n shell .  
e.g.  (3)15 (4)1 :  (3s 3p 3d)15 (4s 4p 4d 4f)1



Non-LTE cases

Practically, LTE situations are very rarely fou
Planck’s law is rarely obeyed, due to the escape of photo
medium. In those NLTE cases, one has to  study the compet
between the atomic processes.

The balance equation is used. A Collisional-Radi
of homogeneous linear equations is obtained.



NLTE:   balance  equation

dNi
dt

= N j
j≠i P
∑ Rji

P − Ni Rij
P

j≠i P
∑ = 0



NLTE codes for levels, configurations,
and/or superconfigurations

Pairs of atomic processes:
spontaneous emission radiative absorption
photoionization radiative recombination
collisional excitation collisional de-excitation
collisional ionization 3-body recombination
autoionization resonant electron capture

for levels
HULLAC, FAC are very accurate NLTE codes.

for configurations
In ATOMIC, the CR system is solved for configura
adapted rates

for superconfigurations
In AVERROES, the CR system is solved for SCs, as
in each SC, the reduced configuration populatio

decreasing-exponential law vs energy, for tempera

NLTE codes



NLTE codes     (cont’d)

For superconfigurations (cont’d)

In MOST/AVERROES, the CR system is solved for SC
assuming that, in each SC, the reduced configuration popu
follow a decreasing-exponential law vs energy, for temper
specific to the different SCs. The CR system can be split
systems of the same size, one for the reduced populations
one for the 1/T(SC) values.

For levels, configurations, and/or superconfigurations

In SCRAM/HYBRID, the CR system is solved for lo
lowly-excited configurations, and highly-excited SCs, wi

In SCROLL, an iteration/convergence procedure i
At the beginning, the CR system contains many SCs. Furthe
depending on the results of the comparisons between succe
some SCs may be discarded, and others may be split into c
and/or superconfigurations, with adapted rates, at each 



Configuration  temperatures

Te = 20 eV
Collisional-radiative calculations in Fe IV, V, VI  (4668 levels)
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uperconfiguration  temperatures  in  Xe  (Cu-like)
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Ionic  excitation  temperature  in  Xe  (Cu-l
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Ionic  excitation  temperatures  in  Gold

Superconfiguration



<Z> values for Gold (Ne=1.1021 cm-3)
(NLTE-4  Workshop data base)

Electron Temperature Te (eV)



IV.  DYNAMICS

The balance equation written above only holds 
for the stationary cases, i.e., in the assumption that 
no ions escape from the plasma. It is much more
complicated, but necessary, to study the dynamic
cases. In the genuine physical situations, the plasma 
exchanges ions with its environment (this is 
hydrodynamics), and photons (this is radiative 
transfer and radiative power loss).



V. CONCLUSION

Work is in progress in many laboratories. A new 
scientific journal, entitled High Energy Density 
Physics, has been created recently by Dick Lee 
(Livermore) and Steve Rose (Oxford). This proves that 
many new methods and results are still expected.

Finding the best compromise between accuracy (of th
completeness (of the plasma description), and time reductio
computing times) is a challenge.

For that purpose, global methods are recommended. T
the advantage of putting some phenomenons into evidence. In
when one only produces millions of numerical results,
« One cannot see the wood for the trees! ».







Pr XXII 4p6 4d2 – ( 4p5 4d3 + 4p6 4d 4f )

4p6 4d2

4p5 4d3

4p6 4d 4f

A
B

D



Emissive  zones

E 3s 3d2

3p2 3d

3s 3p2 

3s2 3d 

3s 3p 3d



THE  TRANSFER  EQUATION

2nd correlation 1st correlation



Total radiative power loss of the  (3)N 

superconfigurations   (Iron ions)



Relative configuration-interaction 
contribution to the total RPL of the (3)N 

superconfigurations 
(Iron ions)



Hartree-Fock methods

Essentially, a Hartree-Fock calculation consists 
in minimizing the total energy of a configurational 
state of given angular and spin parts, through a 
variational optimization of the electronic radial 
functions.
In general, for the computed state, the results are 

better than those 
of any central field. But, in principle, the obtained 
radial quantities are
not valid for the other levels of the same 
configuration, in contrast with
those of the central-field approach.Configuration-mixing can be accounted for by assuming th
to be optimized is a  linear combination of the states of
configurations. The corresponding code is a MultiConfigur

Hartree-Fock (MCHF) code, or Dirac-Fock (MCDF) code.



Ionic  excitation  temperatures  in  Au52+  (Co-
like)

Te = 2500 eV    ne = 10 22 cm -3

T(ion) = 2675 eV

T(ion) = 427 eV
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