Configurations and superconfigurations models in Atomic Physics

X-ray radiation in hot plasmas

J. Bauche and C. Bauche-Arnoult

Laboratoire Aimé Cotton, UPR 3321, Campus d'Orsay, 91405 ORSAY

Cross talks in the physics of many-body systems, Paris, December 2006

TWO DIFFERENT APPROACHES

STATISTICAL MECHANICS

Outline

I. Introduction

II. Statics (structures)
III. Dynamical equilibrium $\quad\left(d N_{i} / d t=0\right)$
IV. Dynamics $\left(\mathrm{dN}_{\mathrm{i}} / \mathrm{dt} \neq 0\right)$
V. Conclusion

I. INTRODUCTION

Basic theoretical ab-initio methods

Central field (radial potential)
Hartree-Fock method
Average Atom
Tensor Operators
Second Quantization
Statistical distributions

Central field

In Slater's approach, an atom is a sphere, centered a which is the center of symmetry of the system.

The simplest form of the Hamiltonian

$$
H=-\sum_{i=1, N} \frac{\vec{p}^{2}}{2 m}-\sum_{i=1, N} \frac{Z e^{2}}{r_{i}}+\sum_{i<j=1, N} \frac{e^{2}}{r_{i j}}+\sum_{i=1, N} \xi\left(r_{i}\right)\left(\vec{s}_{i} \cdot \vec{\ell}_{i}\right)
$$

has also spherical symmetry.

$$
\begin{aligned}
& H_{0}=-\sum_{i=1, N} \frac{\vec{p}^{2}}{2 m}+\sum_{i=1, N} V\left(r_{i}\right) \quad \text { is the zeroth-order Hamiltonian } \\
& H_{r}=-\sum_{i=1, N} V\left(r_{i}\right)-\sum_{i=1, N} \frac{Z e^{2}}{r_{i}}+\sum_{i<j=1, N} \frac{e^{2}}{r_{i j}}+\sum_{i=1, N} \xi\left(r_{i}\right)\left(\vec{s}_{i} \cdot \vec{\ell}_{i}\right) \quad \text { is the residual } \\
& \text { Hamiltonian. }
\end{aligned}
$$

Central field (cont'd)

Zeroth-order solutions :

the configurational states, which gather into degenerate electronic configurations. These states are made of angular and spin functions, and of radial functions.

Higher-order solutions :

the states obtained by diagonalizing the H matrix

- for one configuration (this is a calculation of intermediate coupling)
- for several configurations (this is a calculation of configuration interaction).

An approximate $a b$-initio $\mathrm{V}(\mathrm{r})$ radial potential is generally obtained through the variational optimization of an expansion in terms of Slater basis functions $\mathrm{r}^{\mathrm{n}} \mathrm{e}^{-\alpha r}$.

The central-field model can be chosen to be relativistic

Tensor operators, and graphical methods

The tensor-operator methods have been invented by Gi and fully explained, and extended by Brian R. Judd. They the angular and spin parts of the configurational states, computation of the corresponding matrix elements of the o

For very complicated cases, it is convenient to use the graphical methods developed by A. P. Jucys et al.

Second-Quantization formalism

The Second-Quantization formalism has been adapted Physics by Brian R. Judd. In his version, the well-known annihilation operators do not relate to photons, or to nu electrons.

This formalism is extremely efficient for the calc quantities, e.g., moments of statistical distributions, s subspaces, or averages, or correlation factors.

II. STATICS

Statistics of configuration states and leve

An electronic configuration is denoted (nl)N $\left(n^{\prime} l^{\prime}\right)^{N^{\prime}}\left(n^{\prime \prime} l^{\prime \prime}\right)^{N^{\prime \prime}} . .$. , i.e.,
a suite of open subshells ($n l)^{N}$. Each of its quantum states corresponds
to a pair of quantum numbers (J, M_{J}) which are, in h units, the values
 eOnfugeration,ifor example, is the well-known combinatorial factor,
 to ($\mathbb{\&} \mathrm{J}+1)$ number of J levels. However, the statistical distribution of the J values is related to the derivative vs M_{J} of that of the M_{J} values, which can be expressed as a Gram-Charlier distribution, whose moments are computed exactly.

istics of configuration states and levels

The Gram-Charlier distribution function of M_{J} (denoted M) in the (1$)^{\mathrm{N}}$ configuration reads

$$
(M)=g(2 \pi v)^{-1 / 2} \exp \left(-M^{2} / 2 v\right)\left[1+\left(\alpha_{4}-3\right)\left(3-6 M^{2} / v+M^{4} / v^{2}\right) / 24+\ldots\right]
$$

with the distribution moments $\mu_{\mathrm{n}}(\mathrm{M})=\Sigma_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}{ }^{\mathrm{n}} / \mathrm{g}$

$$
\begin{aligned}
& \mu_{2}(\text { the variance } v)=N(4 l-N+2)\left(4 l^{2}+4 l+3\right) /(4 l+1) \\
& \mu_{4}=N(4 l-N+2)[N(4 l-N+2) x(1)+y(1)]
\end{aligned}
$$

(where $x(1)$ and $y(1)$ are polynomials in 1)
and the kurtosis coefficient $\alpha_{4}=\mu_{4} /\left(\mu_{2}\right)^{2}$.

Configuration levels

J distribution of the levels of configurations
Example: 4f 55d

Transition arrays

A transition array is the ensemble of the radiativ which link two configurations.

Transition array

Lanthanum spectrum

The Unresolved Transition Array (UTA) model

In most arrays, the linewidths and the spectral de lines are large enough for the line profiles to coalesce continuous band. That band can be simulated as a Gaussian (or skewed-Gaussian) feature, using the analytical expans the strength-weighted two (or three) lowest-order moments line wavenumbers.

NUMBERS OF LINES IN TRANSITION ARRAYS

Transition array	Number	of lines Exact	Relative
error (\%)			

Statistics of strengths in a transition array

Porter and Thomas have proved that the radiative of the lines nearly obey a Poisson distribution (the stre to a^{2}).

This agrees with the fact that most (allowed) line array are very weak.

Amplitude distribution in $\mathrm{Fe}^{4+} 3 \mathbf{d}^{4}-3 d^{3} 4 p$

Emissive zones

Configuration interaction effects between UTAs

It may happen that a configuration is linked radia other ones, which are mixed by the residual Hamiltonian energies are perturbed very little (to the second order o but the strengths are perturbed to the first-order. There possible to predict the qualitative (and quantitative) ch UTAs without diagonalizing H_{r}.

Configuration-interaction effects

The Spin-Orbit-Split-Array (SOSA) model

It may happen that the spin-orbit interactions are so large that the UTA Gaussian feature is split into two or three smaller ones, called sub-arrays. Other specific global formulas can be used, in pure j-j coupling.

The $3 d^{8} 4 s-3 d^{8} 4 p$ array

The Resolved Transition Array (RTA) model

For computing the monochromatic absorption, a smooth curve like the Gaussian functions of the UTA model ought to be replaced by a line-by-line model, because the gaps between the lines are essential data. For achieving an RTA model, one uses the same energy variance and total strength as for the relevant UTA. The individual-line characteristics are picked at random in the following joint triple distribution of the upper and lower level energies E

where v and v^{\prime} are the energy variances of the configurations, and λ is a correlation factor.

Correlation between energies and strengths The propensity law

In most $\mathrm{C}_{1}-\mathrm{C}_{2}$ transition arrays, the higher (lower) levels of C_{1} are more strongly linked to the higher (lower) levels of C_{2}.

The more intense lines are closer to the center of the array

RTA model: the Iron absorption spectrum ($\mathrm{T}=20$

 ev)$$
\rho=10^{-3} \mathrm{~g} / \mathrm{cc}
$$

$$
\rho=10^{-4} \mathrm{~g} / \mathrm{cc}
$$

$$
\rho=10^{-2} \mathrm{~g} / \mathrm{cc}
$$

III. DYNAMICAL EQUILIBRIUM

The Local Thermodynamical Equilibrium (LTE)

Four simple laws, from Statistical Mechanics, are enough for calculating the populations of all the levels of all the ions .

1) Planck's law (the radiation spectral
distribution)
2) Maxwell's law energy distribution)
(the free-particle kinetic-
3) Boltzmann's law (the populations of the J levels)
4) Saha's law
(the populations of the ions)

The Local Thermodynamical Equilibrium (LTE)

(cont'd)
n the LTE plasma conditions, the population of each aJ level

$$
\mathrm{N}(\alpha \mathrm{~J})=(2 \mathrm{~J}+1) \mathrm{N} \exp \left[-\Delta \mathrm{E}(\alpha \mathrm{~J}) / \mathrm{kT}_{\mathrm{e}}\right]
$$

where \mathbf{N} is a calibration factor and $\Delta \mathrm{E}(\alpha \mathrm{J})$ is the energy of level referred to the ground level of the relevant ion. A properties can be deduced.

However, when too many levels are involved, it is mor to achieve the calculations by using configurations, or e superconfigurations. Codes like STA and SCO have been wri that purpose.

Definition of superconfigurations

A superconfiguration is the totality of all the c electrons possess the same ensemble of principal quantum n For example,
$(3)^{2}$ represents all the two-electron configurations wi

$$
\begin{aligned}
& 3 s^{2} \\
& 3 s 3 p \\
& 3 s 3 d \\
& 3 p^{2} \\
& 3 p 3 d \\
& 3 d^{2}
\end{aligned}
$$

Superconfigurations in Xe (Fe-like)

| $(3)^{16}$ | 6 configurations | | |
| :--- | :--- | :--- | :--- | :--- |
| $(3)^{15}(4)^{1}$ | 36 configurations | $(3)^{14}(4)^{2}$ | 120 configurations |
| $(3)^{15}(5)^{1}$ | 45 configurations | $(3)^{14}(4)^{1}(5)^{1}$ | 240 configurations |
| $(3)^{15}(6)^{1}$ | 54 configurations | $(3)^{14}(4)^{1}(6)^{1}$ | 288 configurations |
| $(3)^{15}(7)^{1}$ | 63 configurations | $(3)^{14}(4)^{1}(7)^{1}$ | 336 configurations |
| $(3)^{15}(8)^{1}$ | 72 configurations | $(3)^{14}(4)^{1}(8)^{1}$ | 384 configurations |
| $(3)^{14}(5)^{2}$ | 180 configurations | | |
| $(3)^{14}(5)^{1}(6)^{1}$ | 360 configurations | | 2436 configurations |
| $(3)^{14}(6)^{2}$ | 252 configurations | | 5700000 levels |

$(n)^{N}: N$ electrons in the n shell .
e.g. $(3)^{15}(4)^{1}:(3 s 3 p 3 d)^{15}(4 s 4 p 4 d 4 f)^{1}$

Non-LTE cases

Practically, LTE situations are very rarely fou Planck's law is rarely obeyed, due to the escape of photo medium. In those NLTE cases, one has to study the compet between the atomic processes.

The balance equation is used. A Collisional-Radi of homogeneous linear equations is obtained.

NLTE: balance equation

$$
\frac{d N_{i}}{d t}=\sum_{j \neq i P} N_{j} R_{j i}^{P}-N_{i} \sum_{j \neq i P} R_{i j}^{P}=0
$$

NLTE codes for levels, configurations, and/or superconfigurations

Pairs of atomic processes: spontaneous emission photoionization collisional excitation collisional ionization autoionization
radiative absorption radiative recombination collisional de-excitation 3-body recombination resonant electron capture

NLTE codes
for levels
HULLAC, FAC are very accurate NLTE codes.
for configurations
In ATOMIC, the CR system is solved for configura adapted rates
for superconfigurations
In AVERROES, the CR system is solved for SCs, as
in each SC, the reduced configuration populatio decreasing-exponential law vs energy, for tempera

NLTE codes

For superconfigurations

(cont'd)
In MOST/AVERROES, the CR system is solved for SC assuming that, in each SC, the reduced configuration popu follow a decreasing-exponential law vs energy, for temper specific to the different SCs. The CR system can be split systems of the same size, one for the reduced populations one for the $1 / T(S C)$ values.

For levels, configurations, and/or superconfigurations
In SCRAM/HYBRID, the CR system is solved for lo lowly-excited configurations, and highly-excited SCs, wi

In SCROLL, an iteration/convergence procedure At the beginning, the CR system contains many SCs. Furthe depending on the results of the comparisons between succe some SCs may be discarded, and others may be split into o and/or superconfigurations, with adapted rates, at each

Configuration temperatures

$$
\mathrm{T}_{\mathrm{e}}=20 \mathrm{eV}
$$

Collisional-radiative calculations in Fe IV, V, VI (4668 levels)

Energies of $\mathbf{3 d}^{\mathbf{3}} \mathbf{4}$ p states

uperconfiguration temperatures in Xe (Cu-like)

config. energy ($\mathbf{c m}^{-1}$)

Ionic excitation temperature in Xe (Cu-]

Ionic excitation temperatures in Gold

$$
\mathrm{T}_{\mathrm{e}}=2500 \mathrm{eV} \quad \mathrm{n}_{\mathrm{e}}=10^{22} \mathrm{~cm}^{-3}
$$

<Z> values for Gold ($\mathrm{N}_{\mathrm{e}}=1.10^{21} \mathrm{~cm}^{-3}$)
(NLTE-4 Workshop data base)

IV. DYNAMICS

The balance equation written above only holds for the stationary cases, i.e., in the assumption that no ions escape from the plasma. It is much more complicated, but necessary, to study the dynamic cases. In the genuine physical situations, the plasma exchanges ions with its environment (this is hydrodynamics), and photons (this is radiative transfer and radiative power loss).

v. CONCLUSION

Work is in progress in many laboratories. A new scientific journal, entitled High Energy Density Physics, has been created recently by Dick Lee (Livermore) and Steve Rose (Oxford). This proves that many new methods and results are still expected.

Finding the best compromise between accuracy (of tl completeness (of the plasma description), and time reducti computing times) is a challenge.

For that purpose, global methods are recommended. the advantage of putting some phenomenons into evidence. It when one only produces millions of numerical results, « One cannot see the wood for the trees! ».

Pr XXII $4 p^{6} 4 d^{2}-\left(4 p^{5} 4 d^{3}+4 p^{6} 4 d 4 f\right)$

Emissive zones

THE TRANSFER EQUATION

$$
\begin{aligned}
\frac{d N\left(C_{i}\right)}{d t} & =\sum_{j} R\left(C_{j}^{\prime} \rightarrow C_{i}\right) \\
g\left(C_{j}^{\prime}\right) & n_{S C^{\prime}} \exp \left[-\frac{\Delta E\left(C_{j}^{\prime}\right)}{k T\left(S C^{\prime}\right)}\right] \\
& =g\left(C_{i}\right)\left[\alpha+\beta \Delta E\left(C_{i}\right)\right]
\end{aligned} n_{S C^{\prime}} \exp \left[-\rho \frac{\Delta E\left(C_{i}\right)}{k T\left(S C^{\prime}\right)}\right]
$$

where $\Delta \boldsymbol{E}\left(C_{i}\right)=\boldsymbol{E}\left(C_{i}\right)-\boldsymbol{E}_{a v}(S C)$.
$n_{S C^{\prime}}$ is the population of the "average state" of $S C^{\prime}$.

Total radiative power loss of the (3)N
superconfigurations (Iron ions)

Relative configuration-interaction contribution to the total RPL of the (3) ${ }^{N}$ superconfigurations (Iron ions)

Hartree-Fock methods

Essentially, a Hartree-Fock calculation consists in minimizing the total energy of a configurational state of given angular and spin parts, through a variational optimization of the electronic radial functions in general, for the computed state, the results are better than those of any central field. But, in principle, the obtained radial quantities are not valid for the other levels of the same configuration, in contrast with theosef iogu rtatei oremtinailng iceard wpaccocamted for by assuming th to be optimized is a linear combination of the states of configurations. The corresponding code is a MultiConfigur Hartree-Fock (MCHF) code, or Dirac-Fock (MCDF) code.

Ionic excitation temperatures in Au^{52+} (Colike)

$$
T_{e}=2500 \mathrm{eV} \quad n_{e}=10^{22} \mathrm{~cm}^{-3}
$$

Superconfiguration energy (eV)

