Mean-field calculations with the Gogny force including the tensor force

D. Abe
Department of Physics, University of Tokyo
JSPS Research Fellow

and

T. Otsuka
Department of Physics, University of Tokyo
Center for Nuclear Study
RIKEN

Daniel Gogny Jubilee, 30-31, May, 2006
Motivation

- To understand exotic phenomena appearing in unstable nuclei
- To investigate, in particular, **Tensor-force** effect on single-particle energies (SPE)
- Its effect on them is different from that of the LS force
Brief description of the Tensor Force

Tensor force

• originates from the π- (and ρ-) meson exchange
• plays an important role in nuclear properties, such as binding energies
• can influence on SPE in the different way compared to the LS force

\begin{align*}
V_T &= V_T(r) S_{12} \\
S_{12} &= 3(\sigma_1 \cdot \hat{r})(\sigma_2 \cdot \hat{r}) - (\sigma_1 \cdot \sigma_2) \\
 &= 3 \left([\sigma_1 \otimes \sigma_2]^{(2)} \cdot [r \otimes r]^{(2)} \right)
\end{align*}
Monopole Contribution of the Tensor Force

\[(2j_> + 1)V_{j'_j>} + (2j_< + 1)V_{j'_j<} = 0\]

- Repulsive \(j_>j'_> \) or \(j<_j'_< \)
- Attractive \(j_>j'_< \) or \(j<_j'_> \)
Skyrme (SIII) + Tensor (zero range)

\[V_T = \frac{1}{2} T \left\{ \left[(\sigma_1 \cdot \hat{k}) (\sigma_2 \cdot \hat{k}) - \frac{1}{3} (\sigma_1 \cdot \sigma_2) \hat{k}^2 \right] \delta(r) + \delta(r) \left[(\sigma_1 \cdot \hat{k}) (\sigma_2 \cdot \hat{k}) - \frac{1}{3} (\sigma_1 \cdot \sigma_2) \hat{k}^2 \right] \right\} + U \left\{ (\sigma_1 \cdot \hat{k}) \delta(r) (\sigma_2 \cdot \hat{k}) - \frac{1}{3} (\sigma_1 \cdot \sigma_2) \left(\hat{k} \cdot \delta(r) \hat{k} \right) \right\} \]
Gogny-type Interaction

Tensor

\[V_T = (\tau_1 \cdot \tau_2) V_T(r) S_{12} \]
\[V_T(r) = V_T^0 \exp(-r^2/\mu^2) \]
Radial dependences of various interactions

$V_{TE}:$ Triplet-Even

$\mu_T = 1.2[\text{fm}]$
$V_T^0 = 50[\text{MeV}]$
One-body potential

Proton

Neutron

\[V_{LS} = V_{LS}(r) \mathbf{L}_{12} \cdot (s_1 + s_2) \]

\[\simeq iW_0 (\sigma_1 + \sigma_2) \cdot \mathbf{k} \times \delta(r) \mathbf{k} \]

\[U_p \propto \frac{d}{dr} (\rho_n + 2\rho_p) \]

\[U_n \propto \frac{d}{dr} (2\rho_n + \rho_p) \]
68Ni and 78Ni (Neutron)

![Graph showing neutron SPE by D1S (Z=28) and GT2 (Z=28) with labels for $1f_{5/2}$ and $1f_{7/2}$ states.]
68Ni and 78Ni (Proton)

(e) Proton SPE by D1S (Z=28)
(f) Proton SPE by GT2 (Z=28)

Energy [MeV]

Neutron number

$1g_{9/2}$
$1f_{5/2}$
$1f_{7/2}$
$2p_{1/2}$
$2p_{3/2}$
$1f_{7/2}$
$1g_{9/2}$
Variation of the gap between $1f_{5/2}$ and $1f_{7/2}$
(N= 40-50)

\[\Delta E \]

N=50

N=40

\(1f_{5/2}\)

\(1f_{7/2}\)

(a) GT2
proton
neutron

(b) D1S
proton
neutron

(c) SLy4
proton
neutron

\[\Delta F \]

-4
-2
0

Cent
LS
Tensor

Cent
LS
Tensor

Cent
LS

Cent
LS

0 1 2 3 4

5
Density and spin-orbit potential

(a) Proton $1f_{5/2}$

(b) Neutron $1f_{5/2}$

(c) Proton $1f_{7/2}$

(d) Neutron $1f_{7/2}$

(e) $g_p = d(\rho_n + 2\rho_p)/dr$

(f) $g_n = d(2\rho_n + \rho_p)/dr$

$N=40$ $N=50$
Proton $1h_{11/2}$ and $1g_{7/2}$ of 51Sb isotopes

Central Proton

N = 64 - 82 N = 94 - 104

Tensor

LS

\[\Delta E \]

1h_{11/2}

1g_{7/2}
Summary

- Tensor force can influence on single-particle energies in the different way compared to the LS force
- For example,
 - Gap between $1f_{7/2}$ and $1f_{5/2}$ of Ni isotopes
 - Gap between $1h_{11/2}$ and $1g_{7/2}$ of Sb isotopes