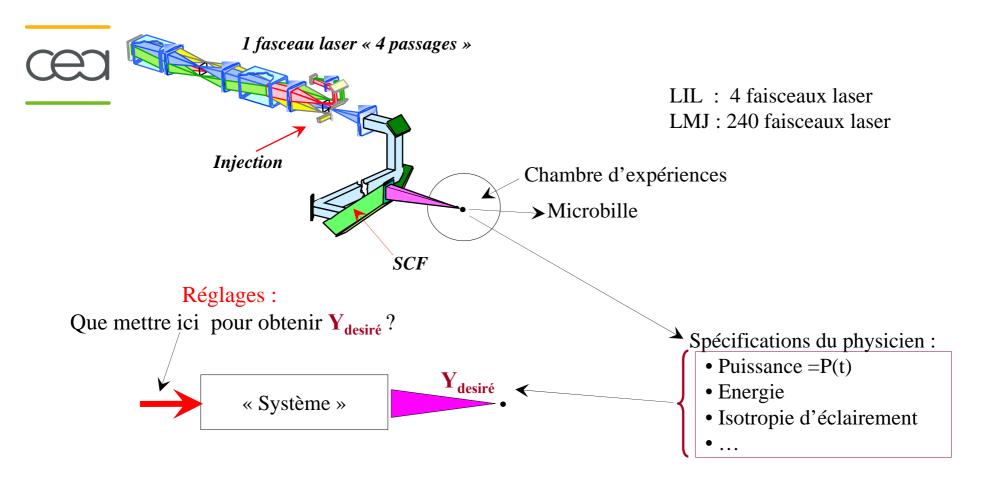


Calibration bayesienne et prédiction de réglages

Marc Sancandi CEA/CESTA

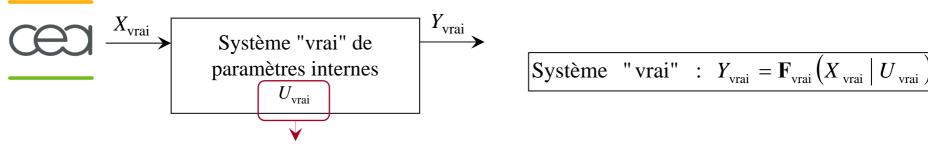
Séminaire « Incertitudes et Simulation », DIF 3-4 Octobre 2007

Qu'est-ce que la « prédiction de réglage » ?



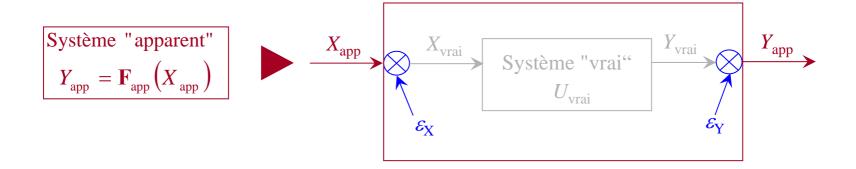
Pour prédire les réglages on doit connaître le système !!! L'approche adoptée repose sur l'utilisation de codes de calculs et sur l'exploitation des résultats issus d'expériences passées (spécifiques ou « de physique »)

Système vrai et système apparent



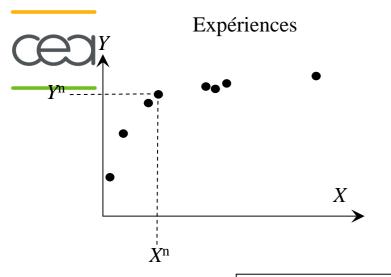
Paramètres « fixes » mais non mesurés

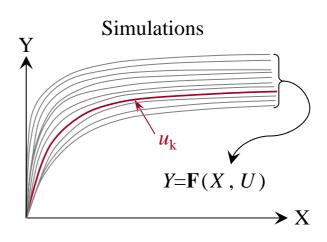
Erreurs de mesure :
$$X_{\rm app} = X_{\rm vrai} + \varepsilon_{\rm X}$$
 ; $Y_{\rm app} = Y_{\rm vrai} + \varepsilon_{\rm Y}$



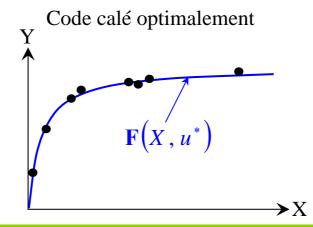
Connaître le système vrai c'est estimer U_{vrai} à partir de X_{app} et Y_{app} .

Ajustement d'un code de calcul : l'approche conventionnelle





Minimiser :
$$R(u) = \sum_{n=1}^{N} (Y_{app}^{n} - \mathbf{F}(X_{app}^{n}, u))^{2} \rightarrow u^{*}$$



Question : Quelle confiance accorder à la valeur optimale u^* ?

- Quel aurait été le résultat si on avait eu des données expérimentales différentes, issues par exemple de répétitions des N expériences initiales ?
- Est-on, au moins, certain que le code \mathbf{F} représente fidèlement la réalité : $\mathbf{F} \stackrel{?}{=} \mathbf{F}_{\text{vrai}}$

On peut apporter des éléments de réponse ...

- 1. En faisant ces répétitions \rightarrow cher \rightarrow donc exclu !!!
- 2. En procédant par reéchantillonnage :

 On estime u* sur une partie des essais et on estime
 sa « qualité » sur la partie restante
- 3. En simulant numériquement ce que qu'auraient pu donner ces répétitions onéreuses

Approche Monte-Carlo


```
Algorithme C

Choisir M "grand"

Pour m = 1 à M faire:

Choix aléatoire de \varepsilon_{X}^{1}, \dots \varepsilon_{X}^{N}, \varepsilon_{Y}^{1}, \dots \varepsilon_{X}^{N}

u_{app}^{*,m} = argmin

\sum_{n=1}^{N} (Y_{app}^{n} + \varepsilon_{Y}^{n} - F(X_{app}^{n} + \varepsilon_{X}^{n}, u))^{2}

Fin Pour
```

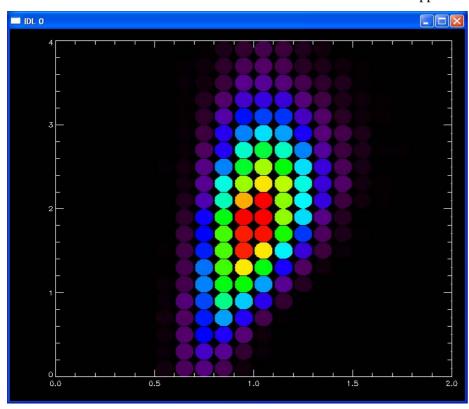
SIMPLEX (Nelder & Mead 1965)
$$u_{\text{app}}^{\text{initial}} = u_{\text{vrai}}$$
solution : u_{app}^*

$$Y = a \exp\left(-a \cdot b \cdot X\right)$$

$$\varepsilon_{X} \sim N(0, 0.2)$$
 ; $\varepsilon_{Y} \sim N(0, 0.2)$

Algorithme C

Distribution de $u_{app}^{*,m}$



Pour tous les exemples qui suivent :

$$N = 5$$

$$X_{\text{vrai}} = 0, 1, 2, 3, 4$$

$$u_{\text{vrai}} = (a_{\text{vrai}}, b_{\text{vrai}}) = (1, 2)$$

MA, MB 1.006 1.961 SA, SB, 0.179 0.870

Avantages et inconvénients de l'Algorithme C

Avantages:

- Simple à mettre en œuvre
- Permet de construire la distribution des solutions optimales

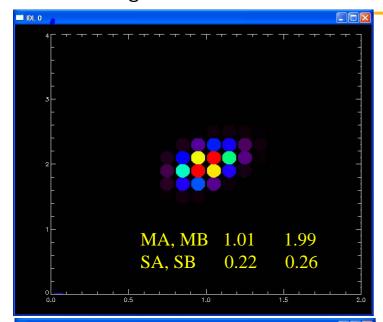
Inconvénients:

- Peut être « cher » (M problèmes de minimisation à résoudre)
- Et si le problème à plusieurs minima?

Remarques:

- Cet algorithme ne garantit pas que la valeur moyenne de $u_{app}^{*,m}$ converge vers U_{vrai} lorsque M tend vers l'infini!
- En particulier car il ne tient pas compte d'informations a priori sur les valeurs les plus probables de $\,U_{\rm vrai}$

Algorithme C

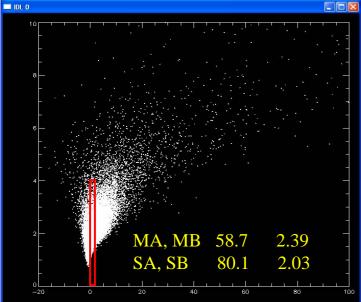


$$Y = (a \cdot X + b) \exp(-k \cdot b \cdot X)$$

$$a \sim N(1, 1/3) \quad ; \quad b \sim N(2, 2/3)$$

Haut : k = 0.15

Bas : k = 1



Solution donnant le plus petit résidu

$\min \sqrt{\frac{R(a,b)}{N}}$	a*	<i>b</i> *
0.066	3.62	2.80

Solution la plus proche de la valeur vraie

a*	<i>b</i> *	$\sqrt{\frac{R(a,b)}{N}}$
1.0004	2.0075	0.555

Rappel : $\sigma_{\rm Y} = 0.2$

Ajustement d'un code de calcul : l'approche bayesienne

... ou « Calibration Bayesienne »

```
Algorithme B

Choisir M "grand"

Pour m = 1 à M faire:

Choix aléatoire de u^{m}

Pour n = 1 à N faire:

Calculer \overline{Q} \left( \mathcal{H}_{m}^{n} \mid \mathcal{D}^{n} \right)

Fin Pour

Calculer \overline{Q} \left( \mathcal{H}_{m}^{n} \mid \mathbf{D}^{N} \right)

Fin Pour

Fin Pour
```

Exemple d'utilisation

$$\overline{u}_{\text{Bayes}} = \frac{\sum_{m=1}^{M} u^{m} \overline{Q} \left(\mathcal{H}_{m} \mid \mathbf{ID}^{N} \right)}{\sum_{m=1}^{M} \overline{Q} \left(\mathcal{H}_{m} \mid \mathbf{ID}^{N} \right)}$$

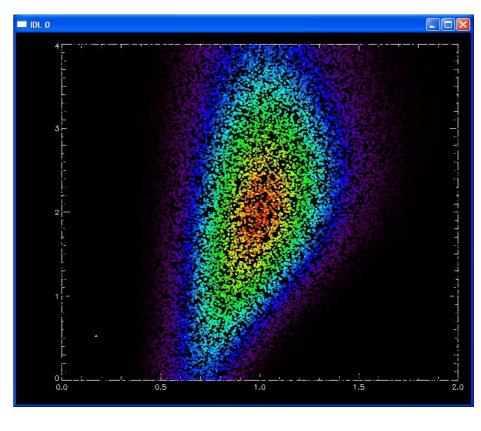
$$Y = a \exp\left(-a \cdot b \cdot X\right)$$

$$\varepsilon_{\rm X} \sim {\rm N}\left(0,0.2\right) \; ; \; \varepsilon_{\rm Y} \sim {\rm N}\left(0,0.2\right)$$

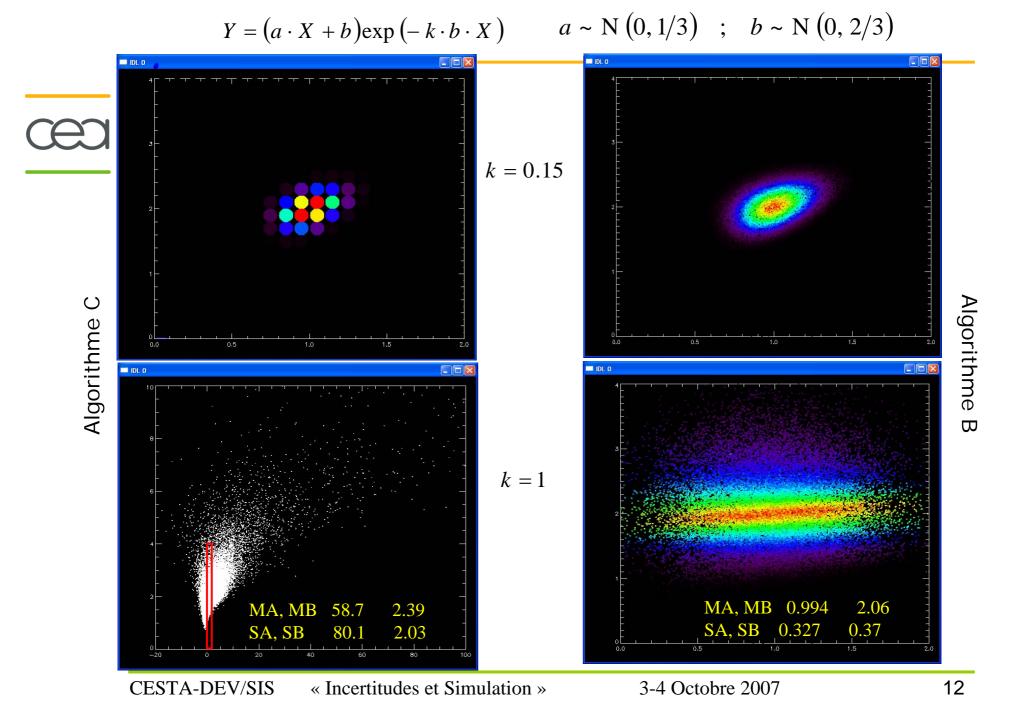
Algorithme C



Algorithme B

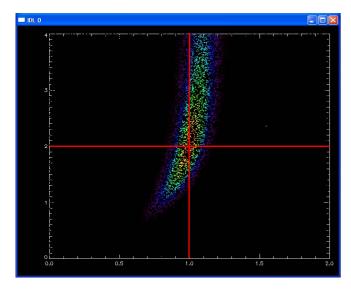


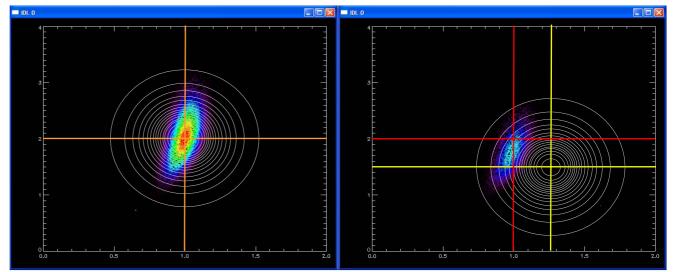
MA, MB 1.006 1.961 SA, SB, 0.179 0.870 MA, MB 0.991 2.129 SA, SB, 0.235 0.935

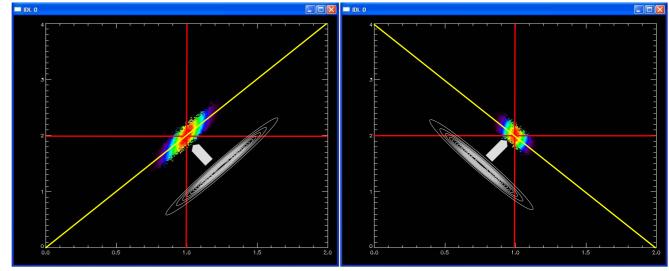


$$Y = a \frac{1 - \exp(-b \cdot X)}{1 - \exp(-b)}$$

$$a \sim U(0, 2)$$
 ; $b \sim N(0, 4)$
 $\rho = 0$







Deux remarques concernant l'Algorithme B

Algorithme complètement parallélisable

Algorithme « dynamique »

Remarque : prior
$$(U) \equiv \overline{Q} \left(\mathcal{H}_{m} | \varnothing \right)$$

$$\overline{Q} \left(\mathcal{H}_{m} | \varnothing \right), \mathcal{D}^{1} \rightarrow \overline{Q} \left(\mathcal{H}_{m} | \mathbf{ID}^{1} \right)$$

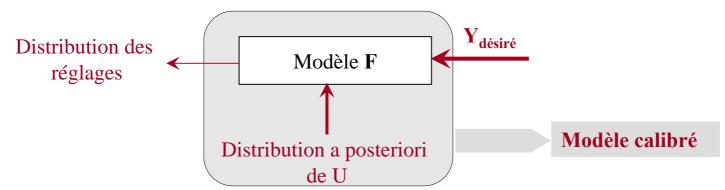
$$\overline{Q} \left(\mathcal{H}_{m} | \mathbf{ID}^{1} \right), \mathcal{D}^{1} \rightarrow \overline{Q} \left(\mathcal{H}_{m} | \mathbf{ID}^{2} \right)$$

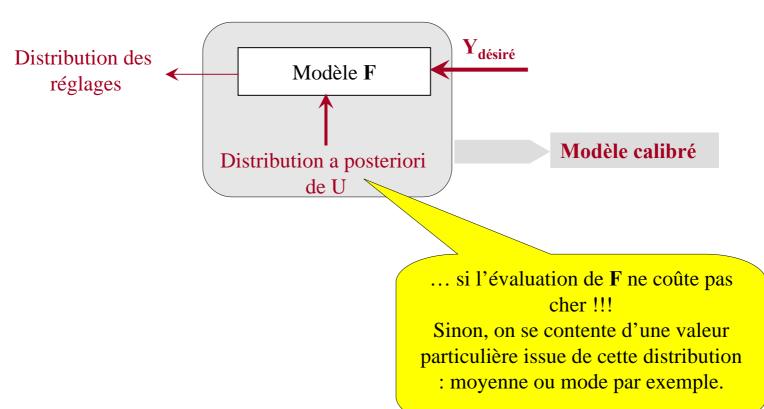
$$\overline{Q} \left(\mathcal{H}_{m} | \mathbf{ID}^{1} \right), \mathcal{D}^{1} \rightarrow \overline{Q} \left(\mathcal{H}_{m} | \mathbf{ID}^{2} \right)$$

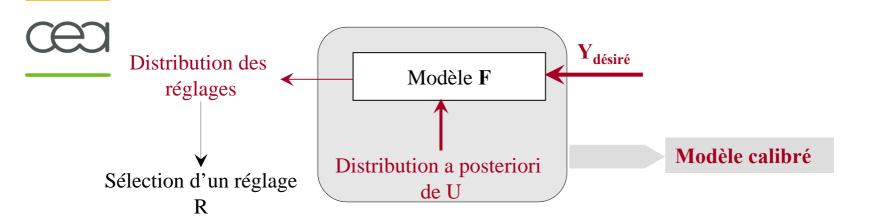
$$\overline{Q} \left(\mathcal{H}_{m} | \mathbf{ID}^{N} \right), \mathcal{D}^{N+1} \rightarrow \overline{Q} \left(\mathcal{H}_{m} | \mathbf{ID}^{N+1} \right)$$

- rapidité potentielle ... mieux « tirage selon un a posteriori » ???
 - \Rightarrow robustesse
 - \Rightarrow performances

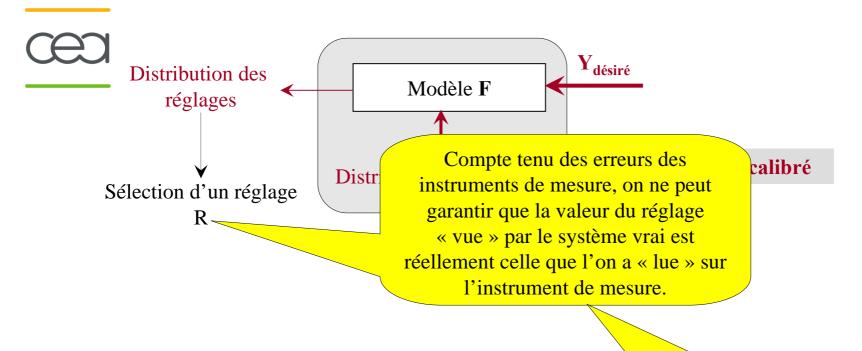
Rappel





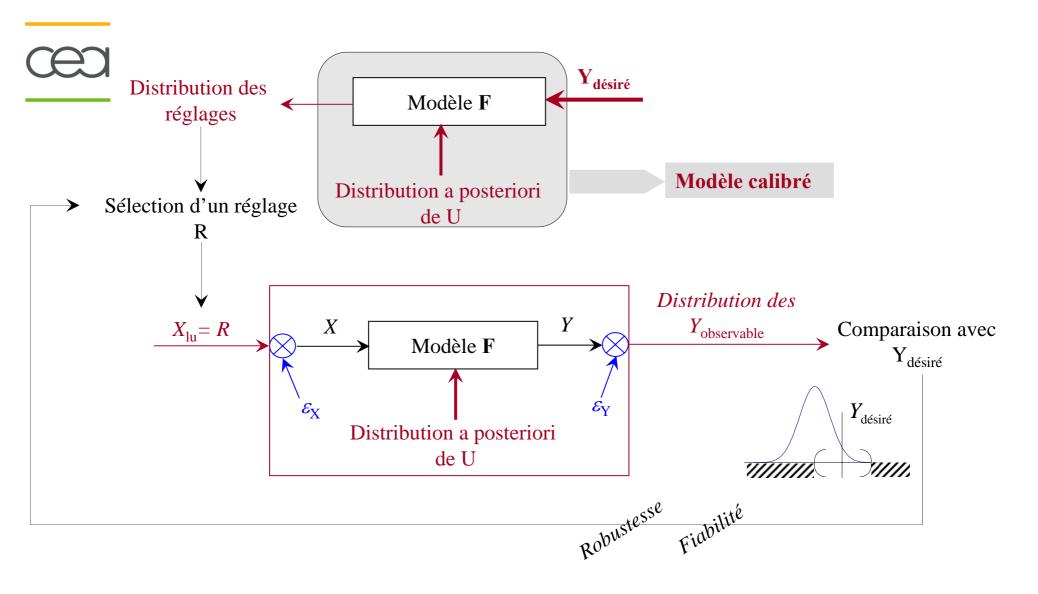


« Incertitudes et Simulation »



Il importe d'estimer l'impact que les imprécisions sur la valeur « vue » par le système vrai peuvent avoir sur la valeur observable de Y.

On utilise le code calibré pour réaliser cette estimation.



En résumé ...

1 Calibration : problème inverse

$$\overline{Q}$$
 ($\mathcal{H}_{m} \mid \mathbf{ID}^{N}$), \mathcal{D}^{N+1} Algorithme B \overline{Q} ($\mathcal{H}_{m} \mid \mathbf{ID}^{N+1}$)

Distribution a posteriori de U

2 Prédiction des réglages : problème inverse

$$\overline{Q} \text{ (réglages } | \varnothing \text{)}, \overline{Q} \text{ (} \mathcal{H}_{m} | \mathbf{ID}^{N+1} \text{)}, Y_{\text{désiré}} \xrightarrow{\text{Algorithme B}} \overline{Q} \text{ (réglages } | \mathbf{ID}^{N+1}, Y_{\text{désiré}} \text{)}$$

$$Distribution \textbf{ a posteriori de } X$$

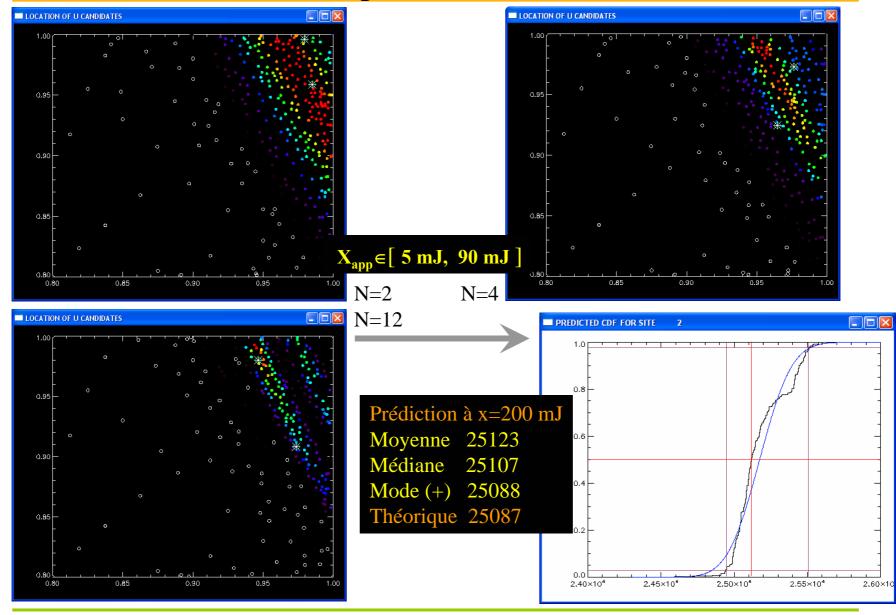
3 Qualification du réglage χ : problème **direct** de propagation d'incertitude

$$\chi \sim \overline{Q}$$
 (réglages | \mathbf{ID}^{N+1} , $Y_{\text{désiré}}$)
$$\overline{Q} \left(\mathcal{H}_{\text{m}} | \mathbf{ID}^{N+1} \right), Y_{\text{désiré}}, \chi \rightarrow Distribution des Y observables$$

4 Choix d'un réglage « optimal » : en présence d'incertitudes c'est un problème inverse complexe

Calibration sur deux paramètres

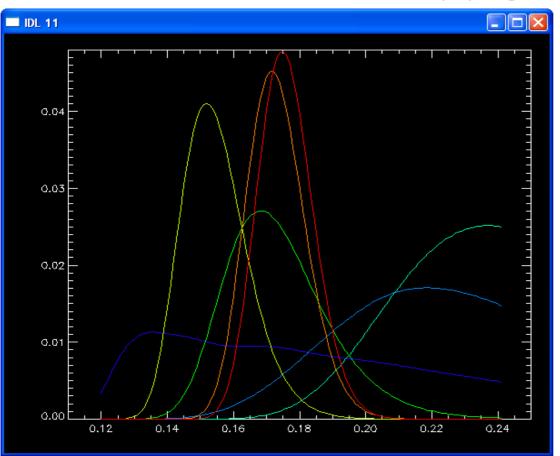
(réflexions de miroirs)



Prédiction de réglage

Le tir 8 a donné 13685 J pour 172.1 mJ injectées : partant de Y_{désirée}=13685 J, retrouver le réglage à appliquer

Calibration bayesienne « dynamique » (sur 1 tir, puis 2, puis 3, ...) Prédiction de la distribition des réglages après chaque calibration



Nb tirs	Moyenne	Ecart type	
2	208.91	20.57	
3	218.61	15.75	
4	173.85	15.90	
5	154.84	10.15	
6	173.16	8.96	
7	175.95	8.41	

Conclusion

CALIBRATION:

- L'approche « par minimisation » doit être maniée avec beaucoup de précautions
- L'approche bayesienne est
 - Souple, robuste, « universelle », « maîtrisable » et facilement parallélisable
 - Mais attention aux temps de calculs ...

... l'algorithme B est inefficace : c'est une illustration et non l'algorithme réel utilisé.

PRÉDICTION des RÉGLAGES

- Mêmes remarques que précédemment
- Le choix du meilleur réglage est un problème ouvert

POINTS DURS

Erreurs sur « les entrées » X :

Très rarement traitées (correctement)

Données X et Y fonctionnelles :

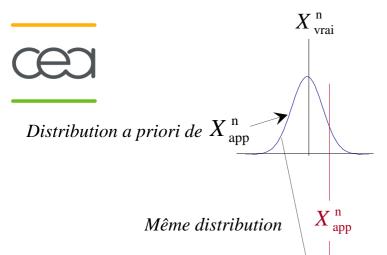
Actuellement un vaste sujet de recherches

L'invariance de U_{vrai} est fausse (vieillissement, dégradations) :

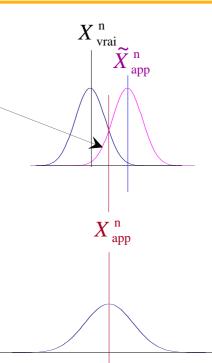
Idée : calibration « par lots » → classification non supervisée

Enfin, on peut avoir plusieurs faisceaux partageant des éléments communs 30x2x4x1

??? Où va-t-on ???



Mais X_{app}^{n} pourrait être issu de cette distribution avec la même vraisemblance.



Distribution à posteriori de

$$X^{
m n}_{
m vrai}$$
sachant

$$X_{\mathrm{app}}^{\mathrm{n}}$$

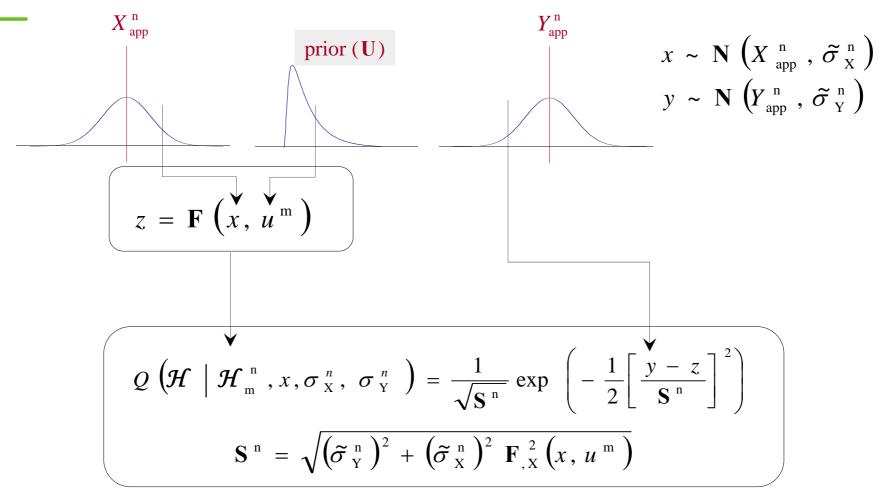
$$\underbrace{\operatorname{postpdf}}_{\Phi_{X}^{n}}\left(X_{\operatorname{vrai}}^{n} \mid X_{\operatorname{app}}^{n}\right) = \operatorname{pdf}\left(X_{\operatorname{app}}^{n}\right) * \operatorname{pdf}\left(X_{\operatorname{app}}^{n}\right)$$

Exemple

$$\operatorname{pdf} \left(X_{\operatorname{app}}^{\operatorname{n}} \right) \sim \operatorname{N} \left(X_{\operatorname{vrai}}^{\operatorname{n}} , \, \sigma_{\operatorname{X}} \left(X_{\operatorname{vrai}}^{\operatorname{n}} \right) \right) \rightarrow \Phi_{\operatorname{X}}^{\operatorname{n}} \left(X_{\operatorname{vrai}}^{\operatorname{n}} \mid X_{\operatorname{app}}^{\operatorname{n}} \right) \sim \operatorname{N} \left(X_{\operatorname{app}}^{\operatorname{n}} , \, \sigma_{\operatorname{X}} \left(X_{\operatorname{app}}^{\operatorname{n}} \right) \sqrt{2} \right)$$

Hypothèse $\mathcal{H}_{\mathrm{m}}^{\mathrm{n}}: u^{\mathrm{m}} = U_{\mathrm{vrai}}$ compte tenu des informations au site n

Hypothèse $\mathcal{H}: z = y$



$$\mathcal{D}^{n} = \left\{ X_{\text{app}}^{n}, Y_{\text{app}}^{n}, \widetilde{\sigma}_{X}^{n}, \widetilde{\sigma}_{X}^{n} \right\}$$

Probabilités conditionnelles (formules de Bayes)

$$\overline{Q}\left(\mathcal{H}_{m}^{n} \mid \mathcal{D}^{n}\right) = \int Q\left(\mathcal{H}_{m}^{n} \mid \mathcal{H}, x, \sigma_{X}^{n}, \sigma_{Y}^{n}\right) \Phi_{X}^{n}(x) \Phi_{Y}^{n}(y) dx dy$$

 $\overline{Q}\left(\mathcal{H}_{_{\mathrm{m}}}^{^{\mathrm{n}}}\mid\mathcal{D}^{^{\mathrm{n}}}\right)$ est la vraisemblance de l'hypothèse $\mathcal{H}_{_{\mathrm{m}}}^{^{\mathrm{n}}}$

Hypothèse $\mathcal{H}_{m}: u^{m} = U_{vrai}$ compte tenu des informations aux sites 1, ..., N

$$\mathbf{ID}^{\mathrm{N}} = \mathcal{D}^{1} \cdots, \mathcal{D}^{\mathrm{N}}$$

$$\overline{\mathcal{Q}} \left(\mathcal{H}_{\mathrm{m}} \mid \mathbf{ID}^{\mathrm{N}} \right) = \prod_{n=1}^{\mathrm{n}} \overline{\mathcal{Q}} \left(\mathcal{H}_{\mathrm{m}}^{\mathrm{n}} \mid \mathcal{D}^{\mathrm{n}} \right)$$

 $\overline{Q}\left(\mathcal{H}_{_{\mathrm{m}}}\mid \mathbf{I\!D}^{_{\mathrm{N}}}
ight)$ est la vraisemblance de l'hypothèse $\mathcal{H}_{_{\mathrm{m}}}$