

G. Poëtte †, B. Desprès †, D. Lucor ±

Propagation d'incertitude en mécanique des fluides compressibles

G. Poëtte † B. Desprès † D. Lucor ‡

† Commissariat à l'Énergie Atomique / DAM Île de France Bruyères-le-Châtel

‡ Laboratoire de modélisation mécanique de Paris VI

gael.poette@mines.inpl-nancy.fr

4 Octobre 2007

Plan

Introduction

tronqués

Systèmes Burgers Variable

Gaz Comp.

vs. Moments

Conclusion

- Introduction et contexte
- Problème simplifié : équation scalaire de Burgers
 - Choix du problème test
 - Le système "tronqué"
 - Résolution numérique du système Burgers tronqué
 - Utilisation de la variable adjointe
- Application à la mécanique des fluides compressibles
- Parallèle entre les méthodes de perturbations et polynomiales
- Conclusion

Contexte

G. Poëtte

Plan

Introduction

Pb test Systèmes tronqués Burgers

Burgers numérique Variable adjointe

Gaz Comp.

Perturbations vs. Moments polynomiaux

Conclusion

Système de lois de conservation :

$$\partial_t u + \partial_x f(u) = 0 \text{ avec } u \in \mathbb{R}^n,$$

muni d'un couple entropie-flux d'entropie $(s,g) \in \mathbb{R}^2 \Longrightarrow$ i.e. système hyperbolique.

• Soit $\xi \in \Omega$ une variable aléatoire (paramètre incertain) et Ω le support de ξ :

$$u(x, t, \xi)$$
.

Théorème de Cameron-Martin (généralisation du théorème de Weierstrass) : Soit $u(\xi) \in L^2(\Omega)$ c'est-à-dire tel que

$$\int |u(\xi)|^2 \mathsf{d}_w \xi < \infty$$

 $\text{et } (\phi_i)_{i\in\mathbb{N}} \text{ la base des polynômes d'Hermite et } \mathbf{d}_w \xi = \frac{1}{d\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{\xi-m}{d}\right)^2} \mathbf{d}\xi \text{ alors}$

$$\int |u(\xi) - \sum_{i=0}^{P} u_i \phi_i(\xi)|^2 d_w \xi \to 0 \text{ quand } P \to 0$$

avec

$$u_i = \int u(\xi)\phi_i(\xi)d_w\xi.$$

- Généralisation: Askey scheme (SISC 2002 Xiu, Karniadakis 2002), arbitrary pdf (X.Wan, Karniadakis 2005 et Witteveen Biil 2006)....
- Pour simplifier, dans ce qui suit : ξ est une loi uniforme de moyenne 0 sur [-d,d] et $w(\xi)=\frac{1}{2d}$.

Pourquoi le choix de l'approche polynomiale?

G. Poëtte

Plan

Introduction

.....

Pb test Systèmes tronqués

Burgers numérique Variable

Gaz Comp.

Perturbations vs. Moments polynomiaux

Conclusion

- Objectif de l'étude : éviter les méthodes de "Brute Force" (MC, N runs en parallèle...).
- $\underline{\mathrm{But}}$: Obtenir $u(x,t,\xi)=\sum_{i=0}^\infty u_i(x,t)\phi_i(\xi)$ avec $u_k(x,t)=\int u(x,t,\xi)\phi_k(\xi)\mathrm{d}_w\xi.$

-Intérêts :

- Découplage variables classiques (x, t) et variables incertaines ξ .
- Accès immédiat à tous les moments stochastiques à partir des moments polynomiaux $(u_0, \sigma^2 = \sum_{i=1}^{\infty} u_i^2 \langle \phi_i^2 \rangle$, skewness et kurtosis...).
- Accès à la fonction densité de probabilité (pdf) et donc aux quantiles.
- Accès rapide aux indices de Sobol .
- Amont : Choix de ξ et donc de $(\phi_i)_{i\in\mathbb{N}}$ \to Pré-traitement.
- Aval : Moments stochastiques, indices de Sobol,...→ Post-traitement.
- $\overline{\text{Phase interm\'ediaire}}$ =propagation d'incertitude=cadre de mes travaux \rightarrow EDP sur les $(u_i(x,t))_{i\in\mathbb{N}}$.

Phénomène de Gibbs

- En pratique : développement tronqué à l'ordre P.
- Système hyperbolique de lois de conservation

 Discontinuités

 phénomène de Gibbs.
 Les résultats peuvent sortir du domaine de validité des équations (densité<0 par exemple)
- Exemple : l'équation scalaire de Burgers.

G. Poëtte

lan

Introduction

_

Pb test Systèmes tronqués Burgers

numérique Variable adjointe Gaz Comp.

Perturbations 0.5 vs. Moments

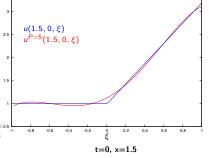


FIG.:
$$u^{P=5}(1.5, t, \xi) = \sum_{i=0}^{5} u_i(1.5, t)\phi_i(\xi)$$
 et solution analytique $u(1.5, t, \xi)$ (1000 m, variance=0.2).

→ Problème déjà étudié par G. Karniadakis et al. et O. Lemaitre et al.

(ロ) (部) (注) (注) 注 り(0)

Dlan

Introduction

Rurger

Burger

Pb test Systèmes tronqués Burgers numérique Variable

adjointe

Gaz Comp.

Perturbations vs. Moments

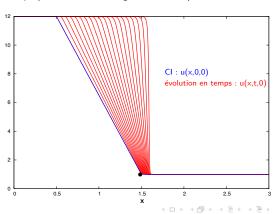
Conclusion

Problème simplifié : Burgers

Équation de Burgers déterministe :

$$\partial_t u + \partial_x \frac{u^2}{2} = 0, u \in \mathbb{R}$$

Résolution numérique (schéma de Roe sur la figure, 1000 mailles) :



Plan

Introduction

Burgers

Ph test

Systèmes tronqués Burgers

Burgers numériqu Variable

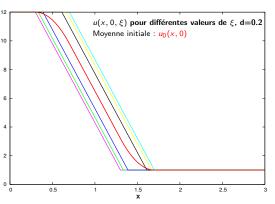
Gaz Comp.

Perturbations vs. Moments polynomiaux

Conclusion

Équation de Burgers avec incertitude

• Incertitude sur l'interface (on perturbe sa position : $u(x, 0, \xi) = u^{0}(x - \xi)$).



- Choix simple de l'incertitude ⇒ solution analytique accessible.
- Quelque soit la méthode considérée il faut définir, analyser et résoudre un nouveau système décrivant l'évolution de

$$u_k(x,t) = \int u(x,t,\xi)\phi_k(\xi)d_w\xi, \ \forall k \in \{0..P\}.$$

Système de lois de conservation tronqué

G. Poëtte

Ph test Systèmes

tronqués Burgers

Variable

Gaz Comp.

vs. Moments

Conclusion

Système de lois de conservation hyperbolique :

$$\partial_t u + \partial_x f(u) = 0$$
 où $u(x, t, \xi) \in \mathbb{R}^n$.

Variable principale tronquée : $u(x,t,\xi) = \sum_{i=0}^P u_i(x,t)\phi_i(\xi)$ et par projection de type Galerkin

$$\partial_t U + \partial_x F(U) = 0$$

avec

$$U = \int u \begin{pmatrix} \phi_0 \\ \dots \\ \phi_P \end{pmatrix} dw \qquad F(U) = \int f(u) \begin{pmatrix} \phi_0 \\ \dots \\ \phi_P \end{pmatrix} dw.$$

- $\underline{\text{Fermeture du système tronqu\'e}}: \left| \ u(x,t,\xi) = \sum_{i=0}^{P} u_i(x,t) \phi_i(\xi) \right|$
- Cela donne un système intrusif.

Introduction

Ph test Systèmes

Burgers

numérique Variable

Gaz Comp.

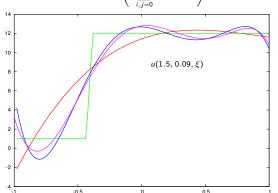
vs. Moments

Conclusion

Résolution numérique de Burgers tronqué

lacktriangle Application à Burgers ($\left\langle \phi_k^2 \right\rangle = 1 \forall k \in \{0..P\}$) :

$$\partial_t \left(\begin{array}{c} u_0 \\ \dots \\ u_P \end{array} \right) + \frac{1}{2} \partial_x \left(\begin{array}{c} \sum\limits_{i,j=0}^P u_i u_j c_{i,j,0} \\ \dots \\ \sum\limits_{i,j=0}^P u_i u_j c_{i,j,P} \end{array} \right) = 0 \text{ où } c_{i,j,k} = \left\langle \phi_i \phi_j \phi_k \right\rangle.$$



x = 1.5t = 0.09

P=3P=5P=6

Ph test Systèmes

Burgers

Variable adjointe

Gaz Comp.

vs. Moments

Conclusion

La variable adjointe

On s'inspire du cadre théorique de Ruggeri-Müller (Rational Extended Thermodynamics) qui repose sur l'utilisation de la variable adjointe :

- Système de lois de conservation hyperbolique quelconque 1D : $\partial_t u + \partial_x f(u) = 0$, $u, f(u) \in \mathbb{R}^n$ avec le couple $s, g \in \mathbb{R}$.
- **Définition** de la variable adjointe : $v = \nabla_u s(u) \in \mathbb{R}^n \Longrightarrow \text{Bijections } v \to u(v) \text{ et } u \to v(u).$
 - ⇒ La variable adjointe devient notre variable principale dans le développement polynomial :

$$v(x, t, \xi) = \sum_{i=0}^{P} v_i(x, t)\phi_i(\xi).$$

- Remarque théorique :
 - Transformées polaires (s*, g*) de (s, g) :

 - $s^*(v) = \langle u(v), v \rangle s(u(v)),$ $g^*(v) = \langle f(u(v)), v \rangle g(u(v)),$

qui forme un couple entropie-flux d'entropie pour le système adjoint.

- Définition S et S* pour le système tronqué :

$$S(U) = \int s(u) dw,$$

$$S^*(V) = \int s^*(v) \mathrm{d}w.$$

Méthode aux moments polynomiaux

G. Poëtte

Introduction

Pb test

Systèmes tronqués Burgers numérique

Variable adjointe

Gaz Comp.

Perturbations vs. Moments polynomiaux

Conclusion

 $\bullet \quad \text{Choix d'une entropie} \Longrightarrow \text{variable adjointe } v = \sum_{i=0}^P v_i \phi_i \Longrightarrow \text{bijections } u(v), \ v(u).$

Choix de l'entropie \implies Contrôle des oscillations

• Système issu de la méthode aux moments, $u(x, t, \xi) = u(v(x, t, \xi))$:

$$\partial_t \left(\begin{array}{c} \int u \Big(\sum_{i=0}^P v_i(x,t) \phi_i(\xi) \Big) \phi_0(\xi) w(\xi) d\xi \\ \dots \\ \int u \Big(\sum_{i=0}^P v_i(x,t) \phi_i(\xi) \Big) \phi_P(\xi) w(\xi) d\xi \end{array} \right) + \partial_x \left(\begin{array}{c} \int f \Big(u \Big(\sum_{i=0}^P v_i(x,t) \phi_i(\xi) \Big) \Big) \phi_0(\xi) w(\xi) d\xi \\ \dots \\ \int f \Big(u \Big(\sum_{i=0}^P v_i(x,t) \phi_i(\xi) \Big) \Big) \phi_P(\xi) w(\xi) d\xi \end{array} \right) = 0$$

- Comme la fermeture est différente, on obtient un nouveau système intrusif.
- lack o U=transformation non linéaire de $V\Longrightarrow$ calcul des V_i^n ? \to cadre théorique Ruggeri-Müller \Longrightarrow minimisation de la fonctionnelle (transformée de Legendre de l'entropie) :

$$T(V) = -\langle U, V \rangle + \langle U(V), V \rangle - S(U(V)).$$

 En pratique : Travail important effectué pour la discrétisation et la mise en oeuvre mais non détaillé dans le cadre de l'exposé.

Plan

Introduction

_

Pb test

Systèmes tronqués Burgers

numérique Variable adjointe

Gaz Comp.

Perturbations vs. Moments polynomiaux

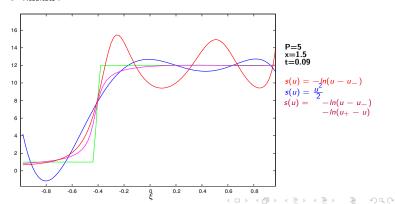
Conclusion

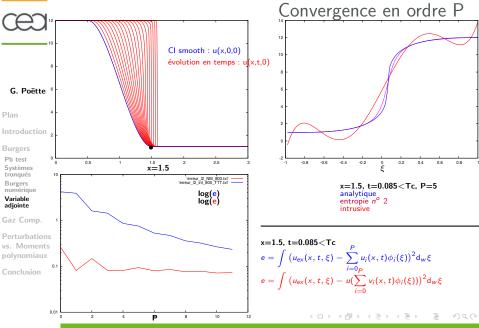
Résultats numériques

Choix d'une entropie :

$$\begin{cases} s(u) &= \frac{u^2}{2} & v(u) = u \\ s(u) &= -\ln(u - u_-) & v(u) = -\frac{1}{u - u_-} \\ s(u) &= -\ln(u - u_-) - \ln(u_+ - u) & v(u) = -\frac{1}{u - u_-} + \frac{1}{u_+ - u} \end{cases}$$

- Choix de u_+ et $u_- \to$ contrôle du domaine de définition de u(v).
- Résultats :





Dynamique des gaz compressibles eulérienne

G. Poëtte

1 10111

Introductio

Burgers

Pb test Systèmes tronqués Burgers numérique Variable

Gaz Comp.

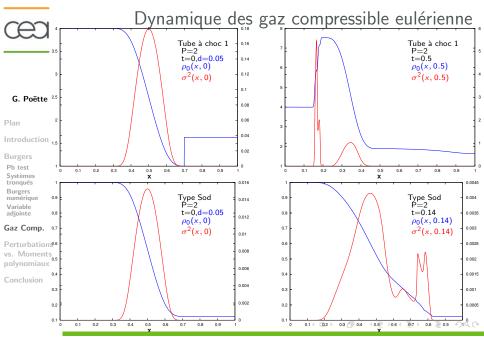
Perturbations vs. Moments polynomiaux

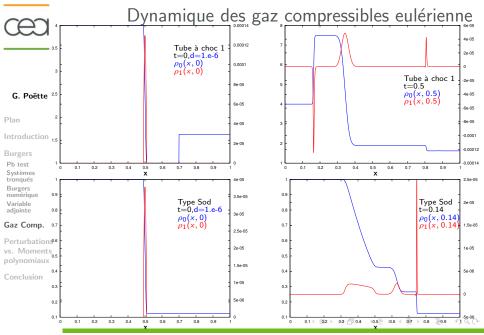
Conclusion

lacktriangle Système de la dynamique des gaz compressibles eulérienne : la variable principale est $(
ho,
ho u,
ho e)^t$:

$$\left\{ \begin{array}{l} \partial_t \rho + \partial_x (\rho u) = 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2 + \rho) = 0, \\ \partial_t (\rho e) + \partial_x (\rho u e + \rho u) = 0. \end{array} \right.$$

- Difficulté :
 - Phénomène de Gibbs.
 - Système \Longrightarrow schéma numérique.
- Nouveau changement de variable $w = (\sqrt{\rho}, \sqrt{\rho}u, \sqrt{\rho}(e + \frac{p}{\rho}))^t$:
 - J'ai montré que ce changement de variable est compatible avec schéma de Roe.
 - Propriétés $w \neq \text{propriétés } v = \left(-\frac{\mu}{\epsilon}, \frac{u}{\epsilon}, -\frac{1}{\epsilon}\right)^t$.
- ⇒ Quelques résultats par la méthode utilisant le changement de variable en w.





Ph test

Systèmes

Burgers numériq Variable

Parallèle Perturbation vs. Moments polynomiaux

Soit $\mathbb S$ le système de lois de conservation initial considéré (Burgers, ddg,...)

Méthode par perturbation :

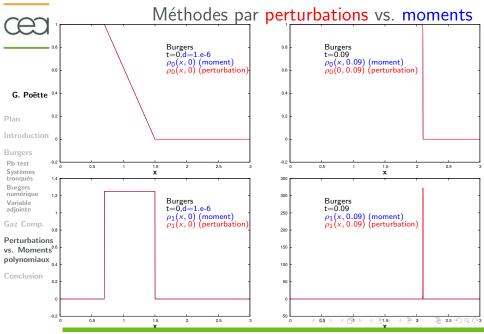
- $lackbox{ }$ perturbation infinitésimale de u (Taylor) $\Longrightarrow u(\xi) pprox \overline{u}_0 + \sum_{i=1}^P rac{\overline{u}_i \xi^i}{i!}.$
- Injection du développement de u dans \mathbb{S} .
- $\bullet \ \ \text{Identification des coefficients des } (\xi^i)_{i \in \{0..P\}} \Longrightarrow \text{système perturb\'e} \ \overline{\mathbb{S}}^P.$
- Méthode aux moments polynomiaux :
 - $\bullet \ \ \text{incertitude } \xi \text{ de } \ \text{variance } d \ \left((\phi_i^d)_{i \in \mathbb{N}} \text{ sa base associée} \right) \Longrightarrow u(\xi) \approx u_0 + \sum_{i=1}^P u_i \phi_i^d(\xi).$
 - $\qquad \Longrightarrow \mathsf{syst\`eme} \mathsf{\ aux\ moments\ } \widetilde{\mathbb{S}}^P_d.$
- J'ai montré que $\left\{\begin{array}{c} \widetilde{\mathbb{S}}^P_d \\ \text{lorsque la variance } d \to 0 \end{array}\right\} \iff \left\{\overline{\mathbb{S}}^P\right\} \ \forall \ \mathbb{S} \ \text{système initial.}$ $\implies \text{La méthode polynomiale contient la méthode par perturbation (perturbation 1D de l'écoulement de base).}$

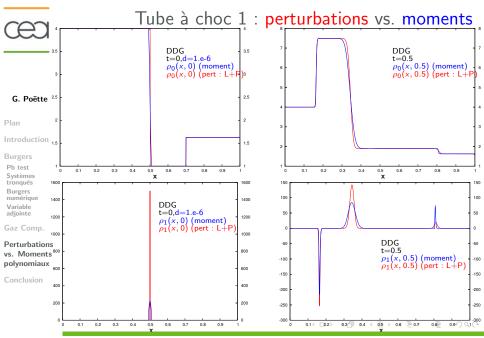
Ceci étend les résultats de Xiu Karniadakis 2004

vs. Moments polynomiaux Conclusion

Gaz Comp.

Perturbations





Conclusion

G. Poëtte

Introduction

Ph test Systèmes

Burgers numérique Variable

Gaz Comp.

vs. Moments

Conclusion

Bilan:

- Mise en évidence du fait que les problèmes spécifiques à l'UQ (phénomène de Gibbs) sont "agravés" par les problèmes spécifiques à la mécanique des fluides compressibles (chocs).
- ⇒ ex : éventuelle apparition de densité négative
- Grâce à un lien avec la thermodynamique rationnelle (Ruggeri-Müller) cela montre que les nouveaux systèmes tronqués sont hyperboliques (mathématiquement bien posés) et qu'il est possible de contrôler le phénomène de Gibbs.

$$\Longrightarrow \boxed{v(x,t,\xi) = \sum_{i=0}^{P} v_i(x,t)\phi_i(\xi)}$$

- Cela met en évidence un parallèle entre les méthodes de perturbation et les méthodes aux moments polynomiaux.
- ⇒ Approche aux moments polynomiaux ⊃ Approche par perturbation
- La nouvelle méthode mise au point est conservative par construction pour tout ordre polynomial (vérifié jusqu'à P=14).

Perspectives :

- 1 seule dimension stochastique mais possibilité de généraliser.
- Méthode permet utilisation de points de quadrature (EOS tabulées...).
- Travail en cours sur la dynamique des gaz compressibles en coordonnées lagrangiennes.
- Travail sur la base polynomiale (pdf f_v(E)?).
- Nouvelle facon d'aborder les perturbations dans le cadre non linéaire?
- Couplage de modes en méthodes de perturbation?