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Simulation and errors

Simulation framework.

Basic ingredients

@ Understanding of the physics involved (optional ?) :
selection of the mathematical model.

@ Numerical method(s) to solve the model.

@ Specify a set of data :
select a system among the class spanned by the model.
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Simulation and errors

Simulation framework.

Basic ingredients

@ Understanding of the physics involved (optional ?) :
selection of the mathematical model.

@ Numerical method(s) to solve the model.

@ Specify a set of data :
select a system among the class spanned by the model.

Simulation errors

@ Model errors : physical approximations and simplifications.

@ Numerical errors : discretization, approximate solvers,
finite arithmetics.

@ Data error : boundary/initial conditions, model constants
and parameters, external forcings, . ..

A
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Data uncertainty

Sources of data uncertainty

@ Inherent variability (e.g. industrial processes).
@ Epistemologic uncertainty (e.g. model constants).
@ May not be fully reductible, even theoretically.
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Sources of data uncertainty

@ Inherent variability (e.g. industrial processes).
@ Epistemologic uncertainty (e.g. model constants).
@ May not be fully reductible, even theoretically.

Probabilistic framework

@ Define an abstract probability space (2, A, du).
@ Consider data D as random quantity : D(w), w € Q.
@ Simulation output S is random and on (2, A, dyu).
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Data uncertainty

Sources of data uncertainty

@ Inherent variability (e.g. industrial processes).
@ Epistemologic uncertainty (e.g. model constants).
@ May not be fully reductible, even theoretically.

Probabilistic framework

@ Define an abstract probability space (2, A, du).

@ Consider data D as random quantity : D(w), w € Q.

@ Simulation output S is random and on (2, A, dyu).

@ Data D and simulation output S are dependent random
quantities (through the mathematical model M) :

M(S(w),D(w)) =0, Ywe Q.
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Data uncertainty

Propagation and Quantification of data uncertainty
Data density
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Data uncertainty

Propagation and Quantification of data uncertainty
Data density

M(S,D) =0
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Data uncertainty

Propagation and Quantification of data uncertainty
Data density Solution density
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Data uncertainty

Propagation and Quantification of data uncertainty
Data density Solution density
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@ Variability in model output : numerical error bars.
@ Assessment of predictability.
@ Support decision making process.

@ What type of information (abstract quantities, confidence
intervals, density estimations, structure of dependencies,
...) one needs ?




Introduction
[ le]

Alternative UQ methods

Deterministic methods

@ Sensitivity analysis (adjoint based, AD, ...) : local.

@ Perturbation techniques : limited to low order and simple
data uncertainty.

@ Neuman expansions : limited to low expansion order.

@ Moments method : closure problem (non-Gaussian /
non-linear problems).

Simulation techniques Monte-Carlo
Spectral Methods
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Alternative UQ methods

Deterministic methods
Simulation techniques Monte-Carlo

@ Generate a sample set of data realizations and compute
the corresponding sample set of model ouput.

@ Use sample set based random estimates of abstract
characterizations (moments, correlations, .. .).

@ Plus : Very robust and re-use deterministic codes :
(parallelization, complex data uncertainty).

@ Minus : slow convergence of the random estimates with
the sample set dimension.

Spectral Methods
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Alternative UQ methods

Deterministic methods

Simulation techniques Monte-Carlo
Spectral Methods

@ Parametrization of the data with random variables (RVs).
@ | projection of solution on the space spanned by the RVs.

@ Plus : arbitrary level of uncertainty, deterministic
approach, convergence rate, information contained.

@ Minus : parametrizations (limited # of RVs), adaptation
of simulation tools (legacy codes), robustness
(non-linear problems, non-smooth output, .. .).

@ Constant developments and improvements (be
faithfull !).
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Alternative UQ methods
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Generalized PC expansion

Polynomial Chaos expansion Wiener-1938

Any well behaved RV 6(w) (e.g. 2nd order one) defined on
(Q, A, du) has a convergent expansion of the form :

O(w) = uplo+ Z 0,1 5,1 )+ Z Z Oy, 2 511 5/2 (w))

I1 1 I1 1 I2 1

+ Z Z Z 9i1 Jio, I3 r3(€f1 (w), 5/2 (w)7 6/3 (w)) +

=1 =1 ig=1

@ {&1,&,...} rindependent normalized Gaussian RVs.
@ [, polynomials with degree p, orthogonal to 'y, Vg < p.

@ Convergence in the mean square sense (Cameron and
Martin, 1947).
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Generalized PC expansion

Polynomial Chaos expansion Wiener-1938

Truncated PC expansion at order p and n RVs :
P
n+p)!
)~ DO, €= (6ol P s
=0
@ {0x}k=o0,. p : deterministic expansion coefficients,

® {Vlk—o,. p: L random polynomials for the inner
product defined with the density of £ as weight :

(W) /Q Wk(€(w))V1(E(w)) du(w)

/ Wk (E)V/(€)P(E)dE = by (W2) .
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Generalized PC expansion

Polynomial Chaos expansion Wiener-1938

Truncated PC expansion at order p and n RVs :
P
n+p)!
)~ DO, €= (6ol P s
=0
@ {0x}k=o0,. p : deterministic expansion coefficients,

® {Vlk—o,. p: L random polynomials for the inner
product defined with the density of £ as weight :

(Vv = /Q Wk(€(w))V1(E(w)) du(w)
- / Wk (€)W/(£)p(€)dE = b (WE) .

® p(¢) =TI, %\/g/z) = W,(&) : Hermite polynomials
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Generalized PC expansion

Polynomial Chaos expansion Wiener-1938

Truncated PC expansion : O(w) ~ Sh_o Ok Vi (€(w)).
@ Convention V5 = 1 : mean mode.
@ Expectation of 4 :

£l = [ o(w)due Zek | w©pde =t
¢
@ Variance of 0 :

V(0] = E[0°] — E[0] =~ > 0 (Wi Wy) .

@ Extension to random vectors & stochastic processes :

04 04

(w, X, 1) = Z : (x, 1) Wi (€(w)).
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Generalized PC expansion

Generalized PC expansion Xiu and Karniadakis-2002

Askey scheme

Distribution of &; | Polynomial familly
Gaussian Hermite
Uniform Legendre
Exponential Laguerre
(-distribution Jacobi

Also : discrete RVs (Poisson process).

0(w) ~ Xk_o Ok Vk(&(w))
where WV : classical (or mixture of) polynomials.
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Application to spectral UQ

Data parametrization

Parametrization of D using N < oo independent RVs with
prescribed distribution p(¢) :

D(w) = D(¢(w)), & =(&1,---,8n) € Qe.

@ Transformation of random variables : D(w) RV.
@ Karhunen-Loeve expansion : D(x,w) stochastic process.
@ Independent components analysis.

Solution expansion
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Application to spectral UQ

Data parametrization

We assume that V&(w) € Q¢, the problem M(S, D(¢(w)) =0
@ is well-posed,
© has a unique solution, denoted S(¢(w)),

and that the random solution | S € Lo(Q¢, p¢) | :

(8?) = / SP(e(w))duw) = [ SE(E)p(€)dE < +oo.
Q

Q¢

Solution expansion
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Application to spectral UQ

Data parametrization

Model

Solution expansion
Let {Wo, V4,...} be a Hilbert basis of L>(2, p¢) then

S(¢(w)) = Z SkWVk(€

@ Knowledge of the spectral coefficients Sy fully
determine the random solution.

@ Makes explicit the dependence between D(&) and S(€).
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Application to spectral UQ
Data parametrization

Model

Solution expansion
Let {Wo, V4,...} be a Hilbert basis of L>(2, p¢) then

S(&(w Z SkWk(€

@ Knowledge of the spectral coefficients Sy fully
determine the random solution.

@ Makes explicit the dependence between D(&) and S(€).
@ Need efficient procedure to compute the Sy.
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Solution Techniques

Non intrusive techniques

@ Compute/estimate spectral coefficients via a set of
deterministic model solutions.

@ Requires a deterministic solver only.
@ Overcome issues related to non-linearities.

@ Suffers from the curse of dimensionnality.

Galerkin projection

@ Weak solution of the stochastic problem M(S, D) = 0.
@ Needs adaptation of deterministic codes.

@ Usually more efficient than NI techniques.

@ Better suited to improvement (error estimate, optimal and
basis reduction, ...), thanks to spectral theory and
functional analysis.
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Solution Techniques

Galerkin projection

@ Introduce truncated expansions in model equations.
@ Require residual to be L to the subspace.

<M (Z Sk (£), D(g)) wm(§)> =0 form=0,...,P.
k=0

\Set of P+ 1 coupled problems.

@ Implicitly account for
modes’ coupling.

@ Requires adaptation of
deterministic solvers.

@ Treatment of
non-linearities.

@ Often inherit properties of
the deterministic model.
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Solution Techniques
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Examples : Fluid flows

Examples of Application to Fluid Flows

@ Natural convection : Boussinesq approximation
@ Natural convection : Low-Mach approximation
@ Electrophoresis :  coupled physical problems
@ Lagrangian formulation : particle method
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Multi-resolution-analysis

Motivations

GPC expansions fail for some problems because of :
@ Non-linearities requiring large polynomial orders for
global approximation over uncertainty range.
@ Non-smooth or steep dependences of the solution w.r.t.
the uncertain data (e.g. parametric bifurcations, absolute
value, threshold effect, . . .).

® Oscillating character of the polynomials.
Response : Le Maitre et al, JCPs (2004).

Wiener-type orthogonal expansion (multiwavelets) using
Multi-Resolution-Analysis ‘ :

v Piecewise polynomial. v Discontinuous dependences.

v Convergence in polynomial v Local control of the resolution.
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Multi-resolution-analysis

Multi-resolution space

ForNo=0,1,... and k = 0,1,..., Vi is the space of
piecewise polynomial functions f: x € [-1,1] — R :

Vf° = {f . the restriction of f on (2"‘/,2_"(/ +1)) € Pxo
forl=0,...,2k—1},

where Py, is the space of polynomials with degree < No.
We have :

o Dim(VY¥°) = (No + 1)(2¥),

eVyecViec...cViec...

o VNo =[], oV is dense in L,([0, 1]) with the scalar
product

1
(f.g) = /0 F(x)g(x)dx.
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Multi-resolution-analysis

Multi-wavelet space

Let us denote Wl,j", k=10,1,2,..., the orthogonal complement

No ; No .
of Vg% in V9,

Vi @ WE® = Vi, W L Vi,

SO
Vo P WE° = L3([0, 1]).
k>0
Let {9, %1, ...,¥no} be an orthonormal basis of WSIO :

(i(x),¥i(x)) = j,

and since Wi° L V§° we have

<¢j,x’> —0, 0<ij<No.
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Multi-wavelet space

Advanced Topics
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The 1+; are the generating functions of the MRA system.

No =1

No =2

Wi (x)
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Multi-resolution-analysis

Multi-wavelet space

The 1; are the generating functions of the MRA system.

Multi-wavelets

Ufi(x) = 2K2y;(2kx — 1), j=0,....No, and/=0,...,2K 1.
® Supp(vf) = [27K1,27%(1 + 1)].
o (vl vft) = Oi0mone

Basis of Vg“) Legendre polynomials

qﬁ,-(x)—ﬁei(zLX_”, i=0,1,... No,
i

<¢;(X), ¢/(X)> = 5,']' fori,j=0,...,No.
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Multi-resolution-analysis

Projection on VX°

Let us denote NN the projection of f on VX :

Nr—12k—1 / No
o) = R 1] — sz, PSS (zaf,m, >)

k=0 /=0 \i=0

where
fi = (f, o) .and off = ({P%; [ = PR° 1}, vf)

For f € L5([0,1]), the projection error can be made
arbitrarily small by increasing the expansion order No
and/or resolution level Nr.
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Multi-resolution-analysis

Application of MRA to UQ

One-dimensional case

° f(w) : RV with density pdf(¢), CDF q(¢) = [*_ pdf(¢/)de’.

o) € La(Q).
0(¢) = 0(g~ ' (x)) = 6(x) for x ~ U(0, 1).
0(x) € La(0.1)).

~ ) O Wi(x(w)), x~ U(0,1),
k

W, elements of the MRA system.
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Multi-resolution-analysis

Application of MRA to UQ

N-dimensionnal case

@ Proceed by tensorization of 1-D MRA system.
@ O(x)=0(x1,...,xx) = D g OpM" (X1, ..., Xx).
] ka(X) = Wk1 (X1) X .- X WkN(XN)-

@ Expansion in terms of CDF of random parameters.
@ Piecewise polynomial approximation.
@ Error reduction through p (No) or h (Nr) refinement.

@ Fast increase with No, Nr and N of approximation
space’s dimension (calls for adaptive techniques).
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Multi-resolution-analysis

Rayleigh-Bénard Instability

#* Aspectratio: A= L/H = 2; Sk

. 3
% Rayleigh number : Ra = 2988TH"

% Prandtl number : Pr = “TCP =0.7;

Kyaei3
insulated
pajensur

T — A\/
Model : Boussinesq equations. hot wall
Parameter and uncertainty :
@ Ra = 2150 (slightly above critical)
® Opu(€) = 5 +0.2¢, €UD.in[-1,1]
Both conductive and convective regimes are explored.

‘The process has a discontinuity in the uncertainty range.
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Comparison Legendre / Wiener-Haar (Nr = 5) solutions.

Kinetic energy as function of 6p,0¢().
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Multi-resolution-analysis

Hierarchy of velocity and temperature modes (Wiener-Haar)




Advanced Topics
000000000 e

Multi-resolution-analysis

Heat-transfer enhancement (from conduct. solution).

Adaptive MRA scheme for No = 1,2 and 3

07 ; — 07 T — 07 T ;
06 W k=6" 0.6 - " k=6-" 06 |- 1
@ O05F  —w ks5 4 o 05 —\ﬂ k5 4 4 051~k k<5
é 04f  Spf— ke A é 04 b p— k=4 4 % o4l HA— ket Ao
a3l s~ = . k3 A 3 —3oa -3 Bk k=3
ERLE k3 ERLE ks g 03 k=3
S 02— —t ko 5 02 b= S5 02 7 b=
=z . = z
5 oif—_ 0 S o4
k=1 k=1 k=1
[ i\ '} - 0 - - [ “dNu -
0.1 - - 0.1 - - 0.1 - : -
03 04 05 06 07 03 04 05 06 07 03 04 05 06 07
L L L

Only details around critical points are computed.
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Adaptive Techniques

Limitations of MRA

v Fast increase of the basis dimension with No and
resolution level Nr.

v Adaptivity possible but quickly cumbersome with
increasing N( number of stochastic dimensions).

A More efficient approach
Remark : Spectral problems present no differential operator
along stochastic dimensions. (Model solutions for different
data are independent)
=> Strongly suggests a domain decomposition technique in
the parameter space Q, = [0, 1]".
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Adaptive Techniques

Partition of the random parameter space

Domain decomposition.
Basic principle : zooming.
v Define a generic expansion basis for [0, 1]N :

N-Dimensional Legendre basis
+
1-D first resolution level Multi-Wavelets.

v Rescale and translate this basis to expand locally the
solution on non-overlapping sub-domains Q; c [0, 1]N.

v Decide if the expansion is sufficient over Q; ; If not :

break it into smaller sub-domains
along under-resolved dimensions only

v Refinement strategy based on 1-D details.
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Adaptive Techniques

Reaction surface problem

Convergence with ¢, :
Governing equations :

=Y
I

Q
—~
—

|
>

|

2
)
%

—B(p —1)p?
p(t=0) = po
Uncertainty
v po~ U(0,1).
v 3~ U(0,20).
v po, Bind. RVs.

= 2 Stochastic dim.

pdilpt=1))

patipt=1

Applied for up to 8 stochastic dimensions and a complex
chemical mechanism (Le Maitre et al, J. Sci. Comp. 2007.)
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A posterior error estimation

A posterior error estimation (Lionel Mathelin, LIMSI-CNRS)

Objective : design less heuristic criteria / error indicator.

Variational framework

Solve for U(x € Qx, £ € Q¢) € Vx ® Ve
A(U;®|D) = B(®|D) Vo € Vx® Vg,

where :
@ ) suitable deterministic Hilbert space,
@ Ve = Lo(, pe) space of 2nd order RV,
° A(U' ®|D) = fg a(U(E ; ®(£)|D(€))p:(€)dE,
B(®|D) = [o, b(®(£)ID(£))p:(£)dE,,
al.;.|.)a determlnlstlc semi-linear form,
° b(.|.) a linear form.
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A posterior error estimation

Deterministic finite element space
o 0, =M ol
o U'(x € ) = N gD (x).

Y — span ({N,(’)}, 1< 1< Ny, 1 gigNd(/)).

Stochastic space
® Q¢ = Un’s Q(m)
o O =™ 4™ X [T &7
0 U“(ﬁeﬂ(m) St UM (e),

Vgh = span ({\Uf(m)}, 1<m<Nb 0< k< P(m))
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A posterior error estimation

Approximation space
Vi =Vie V.
The approximate solution at point (x, 5) of Q QX X Qg, is
and solves

A(U"; " D") = B(o"|D") Vo e V.

Error estimation
For J : Qx x Q¢ — R, the approximation error is measured as

n—]J ) -7 (u")]-

The exact solution being unknown n has to be estimated.
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A posterior error estimation

Dual-based error estimate

J (U) - J (U") ~ B(Z — Zh|D") — A(UM; Z — 2"\ D),
where
@ Zh'is the approximate dual solution satisfying
J(UM o) — AU &, Z2'DN =0 Vo e Vh,
@ Z € V1 5 VM an estimate of the exact dual solution :_
J(UM o) — AU &, ZIDM) =0 Vo eV
In practice : VP is constructed by increasing the stochastic and
finite element orders of V7.

Remark : Dual problems are linear, primes denote Gateau
derivatives :

(U, @) = lim LW = JU+P)

e—0 €
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A posterior error estimation

Local error estimate

N« Nb
n=|7(W)=IWN| <33 mam
I=1 m=1
where 7, ,, is the local contribution of (Qf(') X ng)> to the

aposteriori error estimation.
To ensure 7 < ¢, the approximation space V" is refined such
that

e, VI,me[1,Ny]x[1,Nb].

7 < o
1l,m N, Nb =

Refinement scheme
@ Refine Vy or V; ?
@ What type of refinement : hor p?
@ If h¢, then along which stochastic dimension(s) ?
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A posterior error estimation

Example : Burger’s equation with uncertain viscosity (N = 2).
@ V! :10 spectral finite elements (order 15).
@ Stochastic order No = 2 with isotropic h:-refinement.
2
u(e)agff) —u(0)? 1 ),
Errors on computed mean and variance
as a function of the number of primal and

dual problems solved. Comparison of
adaptive and uniform refinements.

|

(Mathelin aﬁd Le Maitre, Com. Appl. Math and Comp., 2007)
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A posterior error estimation

Outline

o Introduction
@ Simulation and errors
@ Data uncertainty
@ Alternative UQ methods

e Spectral UQ
@ Generalized PC expansion
@ Application to spectral UQ
@ Solution Techniques

© Examples : Fluid flows

e Advanced Topics
@ Multi-resolution-analysis
@ Adaptive Techniques
@ A posterior error estimation

e Conclusive remarks



Conclusive remarks

Improvement of Spectral UQ

@ Computational efficiency (steady-solvers, pre-conditioning,
multigrid techniques,. . .).

@ Development of directional error estimates to improve
adaptive techniques.

@ Construction of reduced basis.
@ Adaptive non-intrusive technique.

Open problems

@ Existence/treatment of multiple solutions !

@ Stochastic eigen-value problems (many issues remaining
to be addressed).
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Appendix

Natural convection Boussinesq approximation

Governing equations

ou Pr
@ Momentum : — 4+u-Vu=-Vp+ —V2u+Prd
ot P v/Ra y
@ Mass : V.-u=0
@ Energy : 96 +u-Vl= SR
) ot ~ VRa

Uncertain boundary conditions
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Natural convection Boussinesq approximation

Governing equations

Uncertain boundary conditions

Insulated

Hot wall
Trem prop

Insulated

N
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Natural convection Boussinesq approximation

Governing equations

Uncertain boundary conditions

Insulated
) @

@ u=0onT.
@ J9(x,y =0,1)/0y =0.
| @ 0(x=0,y)=1/2.

|

/

Hot wall
Trem prop

NN

Insulated

N
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Natural convection Boussinesq approximation

Governing equations

Uncertain boundary conditions

Insulated
) @

eu=0onT.
@ 09(x,y=0,1)/0y =0.
| @ 0(x=0,y)=1/2.
/b O(x =1,y,w)=—-1/2+60(y,w).

Hot wall
Trem prop

NN

Insulated

N
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Natural convection Boussinesq approximation

Governing equations

Uncertain boundary conditions

Insulated
) @

eu=0onT.
@ 09(x,y=0,1)/0y =0.
| @ 0(x=0,y)=1/2.
/b O(x =1,y,w)=—-1/2+60(y,w).

fem plop

SN

Hot wall

\

Insulated

(O'(y)0'(y')) = og exp[—|y — y'|/L], 0 ~ N(0,03).

N
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BC and solution representations

P

N
0'(y.€) =>_ VAOiI(Y)E =D 0k(y)Vk(€).
i=1

k=0
P

(uv p; 9)(5) = Z(uvp’ e)k\Uk(ﬁ)

k=0

@ ¢ ~ N(0,1) — Hermite polynomials.
@ Stochastic dimension N.
@ Expansion order No — P + 1 = (N + No)!/(N!No!).

Galerkin projection
Implementation and solver




BC and solution representations

Galerkin projection

P P
ou; <\|/,'\Uj\|/k> Pr >
ZE VU N p+ ——WV2U; + Pro;
00 = Vw1,
-7 T u;-vo = V<o;
ot Z(:)kz:% / K <\|/,'\|f,'> vRa !

Vv - u = 0
@ P + 1 coupled momentum and energy equations.
@ P+ 1 uncoupled divergence constraints and BCs.

Implementation and solver




BC and solution representations
Galerkin projection

Implementation and solver

Discretization

@ Uniform grid, staggered arrangement and 2nd order FD.

@ Semi-explicit second order Adams-Bashford time-scheme.
Incompressibility Treatment

@ Prediction / Projection method (Chorin).

@ FFT based solver for the elliptic pressure equations.

CPU : essentially projection of uncoupled modes :
\ Stochastic ~ (P + 1) x deterministic.\
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Convergence and performance (unsteady solver)
1000 prrrr——r—rrrrrrr @ N =4 ~ 6 is enough for
R L>1/3.
S ol s X_ ] @ No = 3 — relative error
: % on variance < 1074
g * = + o
ey e Eﬁgg @ ~ 1000 times more
£ + sope 1 efficient than MC (LHS).
z slope 1.1
R 1 @ ~ 10 times more
J . efficient than NISP + GH
1 10 100
P quadrature.

Le Maitre et al, JCP (2001).
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Example of velocity modes Ra=10%L=1 — 05 =0.25.

MODE 0 Scaled by .500E+00 MODE 1 Scaled by .300E+01 MODE 3 Scaled by .500E+01 MODE 6 Scaled by .400E+02 MODE 10 Scaled by .400E+02

Uncertainty bars
g = 0.125 o9 = 0.25

; % %&, wf f . il
;X ) &S ; iT
FTTv e ™ = e é‘“ i
b4 1 !
Le Maitre et al, JCP (2002).
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Example of temperature modes Ra=10%,L =1 — ¢y = 0.25.

T_ 0~ [~497E+00,496E+00]

0213
0.0708
I«u 355

T_ 1 [0.000E+00,.222E+00]

T_3- [~714E-01,.670E-01]

T_6- [~556E-02,386E-02]

T_10- [-.137E-01,682E-02]

0222 0067 000386 o.0682
o150 0274 o017 0000963
o1 000768 0000178 000197
00955 001 000152 000489
0.0639 00318 000287 ‘ & [lo00s2
Iunm Imm - Immz ® rmm—
o.oo0sse Loons K | o00sse oo

Heat-transfert density

L=1

— 7# 09

#

PDF(Nu)

DT S,

T 0.1

0.09 |-
0.08 -
0.07 |-
0.06 -
0.05 [
0.04
- 0.03 |-
0.02 |-
0.01 -

PDF(Nu)

5 0 5

15

20 25

30

Le Maitre et al, JCP (2002).
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Natural convection Low-Mach approximation

@ Formulation (Najm et al, J. Comp. Phys., 1998 & 1999).
dp 1 dP 1 1
0 - 4 VT — . T
ot ’yT at + T (pu v Pr\/RaV (HV ))
dP 1 1 1
— = | =(puy- VT — ——V - (sVT) ) dQ/ [ =dQ
dt 7/9 T ('0 PrvRa (e )> //Q T
dpu  __9pu® dpuv oM 1
ot ax dy  ox ' JRa "
% _8puv_8pv2_6j+ 1 _lpf‘l
ot ox oy 9y  JRa ' Pr 2e
ro
p

@ Difficulty : non-linearities

(O Exact inversion of the Galerkin product.

(O Exact mass-conservation (mean sense is not enough).
Le Maitre et al., J. Sci. Comp., 2004.
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Electrophoresis Debusschere et al, Phys. Fluids (2003)

Code structure

T /\ v ( potential (BCs).
\V,m | . gpeie v Tension at channel
/ - ] ‘ ’ ends.
u [ o \ / / v Reaction rates.
‘ / = v Initial conditions.

Multi-physics : NS, Spectral UQ (Galerkin)
diffusion convection, .

Siesie Gareie e Respective influences of
chemistry (finite & infinite | 7 Uncertainty sources.
rates).

v

v
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Stochastic spectral methods for uncertainty quantification

Methodological developments

@ 90s : Wiener-Hermite expansion of model solutions
(Ghanem & Spanos).

@ Applications to linear models (elasticity, thermal sciences,
porous media, .. .)

@ 2000 : application to non-linear models : Navier-Stokes
equations, porous media, reacting flows.

@ 2004 : development of alternative expansion basis
(generalised polynomial chaos, piecewise polynomial
expansions, wavelets).

@ Essentially rely on Eulerian formulations/models.

Are spectral expansions amenable to Lagrangian models ?
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Lagrangian techniques for Navier-Stokes

Particle methods

@ Solve (incompressible) N-S equations in rotational form.

@ Theoretically well grounded.

@ Deal with complex/moving boundary problems, infinite
domains, ...

@ Immediate extension to low diffusivity/inviscid flows without
requiring stabilisation or flux limiters.

@ Handle transport and reactions.

4

Can we extend particle methods to propagate uncertainty ?
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2D incompressible Navier-Stokes equations

Rotational Form

u:V/\(wez),
w(x,0) = (V Au(x,0)) e,
uw—0 as|x|— oco.

Velocity kernel (Biot-Savart)

1

1 _
U= o Kw=o— L K(x,y)A(wez)dy, K(x,y)=(x—y)/|x—y[>.

2
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Particle approximation

Smooth approximation

Particles : position X(t), circulation I';(t), core size ¢ :

w(x,t) = Zr ()¢(x = Xi(D), i C(x) = 5(x).

Solution technique

Split convection and diffusion processes :

@ Convection : transport particles with flow velocity.

@ Diffusion : update particle circulations to account for
diffusion (Particle Strength Exchange method).
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Solution method

Convection step

Np
ax; ,
= Zr, (Xi, Xj), E‘O'

@ K. :regularised Biot-Savart kernel.
@ Reduce to ODE, but complexity in O(Np?).

Acceleration of velocity computation

@ Multipoles expansion — O(Np).
@ Particle-mesh techniques :

@ Project circulations I'; on an Eulerian mesh.
©Q Solve V2V = —w (using FFT based solver for instance).
© Interpolate at X; to obtain particle velocities.
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Solution method

Integral representation of differential operators
Let n(x) a radial function such that

[ #ndx= [ oo -2

/x“‘yo‘zn(x)dX:O, 1<ai+ar<m+1, ay,a0 #2
RZ

then for positive integer multi-index 5 and 7.(x) = n(x/e)/e= we have
o8l

P oxd = / [F(y)+(= 1) £ )1 (x— y)dy+O(™).
B

Degond & Mas-Gallic (1989), Eldredge et al (2002)
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Solution method

Diffusion term

dr’ Zc(x X)S[rj—ri.

@ Use compact functlons 1 so only particles within a few
core-size distances contribute.

ax; o
o= LX)

ar; N"
E = VZ,C(X, —X,-)S[F,-— I',-].

j=1
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Direct spectral expansion : the bad way !

Set both particle positions and circulations as uncertain :

Xi(t,€) = > Xl (OVk(©), Ti(t,&) = IMil(D)Wk(€).
k k

Apply Galerkin projection to particle problem :

wi) WX — 257 won ). X)),

vy M <W(€)V(£)ZE(X/(£)—Xj(ﬁ))S[r/(f)—Fi(5)1>~

=

@ Requires stochastic projection of the kernels.
@ Fast algorithms for velocity estimation are impossible.
Untractable problem
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Continuous stochastic problem : a better approach

Let’s go back to the continuous vorticity equation :

9w(§)
ot

+U(E)Vw(©) = v(©VPw(&), w(x, 1,8 = W] (X, HWk(E).

k
The Galerkin projection gives :

Ow]
ot

+Z%MNM=Z%MWM,@=%$ﬁ
i,j i,J

or, since by convention Wg = 1 = Cox = dx and

Iwl,

or H UVl == Culul, VIw]; + > Cl], V[l

i#0,j isj

@ Stochastic modes are convected with the mean flow [u],.
@ Interactions with other modes are treated as source terms
using integral approximations (PSE).
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Particle approximation of the stochastic problem

Particles with stochastic strengths I';(f,&) = >, [[i], ()W« ().

ax;
at
d[rf]k: _
at
+
+
[Uf]k

[Ui]07
Np P P

S ST CumS {G*(Xi — X)) ([T, + (UL 7 ,)

j=1 1=1 m=0

C;IV(X/ = X;) ([Vil[Tilm + [VILITiL,)
p P P
D2 CumSWLLXi = Xp) ([Nl — M)

j=1 1=0 m=0

1
o DO IM1K(Xi, X)).
j=1

@ Kernels are evaluated only once for all modes.

@ Fast algorithms for velocity computation are still possible.

@ Formulation is conservative.
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Lagrangian formulation Le Maitre and Knio, J. Comp. Phys. (2007)

Particle method

Particles with

@ deterministic positions,

@ stochastic strengths (circulation & heat).
Time-integration : RK-3

@ Particles convected by the mean flow.

@ Integral representation of stochastic modes interactions.

Code efficiency
@ Stable and diffusion free convection step.

@ Fast algorithms for stochastic velocity calculation (e.g. FFT
based, multipole expansion) : O(nlog n).

@ Conservative method (regridding).
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Results (I) Convection of a passive scalar

Stochastic equations

oc
E‘FU Ve = 0

o(x,1,€) = exp [~|1x — Xo|[2/rcP|xo]] , X0 = ey,
U(x, ) =—(1+0.0756)x Aes, €~ U[—1,1].

@ Particle positions Xj(t), e = 0.025.

@ Particle strengths C;(t,&) = >, [Cil (£)Vk(§).
@ Stochastic basis : Legendre polynomial.

@ Stochastic order up to No = 20.

@ RK-3 with At = 27/400.
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Mean and Standard deviation of c(x, {, ).

Meén (top rdw) and s{andard d.eviati.on (botto.m row) of the
scalar field after 1 revolution (left) and 2 revolutions (right).
No = 20.
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Results (Il) Evolution of a radial vortex

aw . 2

a‘FU'VW—I/V w,

_ oy &Pl=lxIP/d]
w(x,t—O)— d 5

v = 0.005 + 0.0025¢, ¢ ~ U(—1,1).

@ ¢ = 0.05, remeshing every 10 iterations.

@ Simulation for t € [0,30], At = 0.02 with RK-3.

@ Velocities computed with particle-mesh scheme hy = e.
@ Wiener Legendre expansion with No = 5.

@ Check the invariants of the flow.
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Mean and Standard deviation of w(x, t,¢).

T
computed
exact:

mO>eo0
!

T
computed
exact:

0.12

o(w)

0.08

o(®)

0.04

Mean (top row) and standard deviation (bottomrrow) at different
times.



Appendix

Results (lll) Natural convection problem

@ Evolution of a compact hot patch of air in infinite medium.

@ Boussinesq approximation : incompressible Navier-Stokes
+ buoyancy terms and heat transport equation.

@ Uncertainty and the Rayleigh number in the
Ra ~ U[2.105,3.109].

@ ¢=1/30.
@ Simulation for t € [0,28], At = 0.2 with RK-2.

@ Remeshing every 4 iterations : Np > 200, 000 at the end of
the simulation.

@ Velocities computed with particle-mesh scheme hg = e.
@ Wiener Legendre expansion with up to No = 12.




Appendix

Mean and Standard deviation of the temperature field.

0.3 0.1
. 0.0¢
0.28 0.08
02 0.07
0.0€
0.15 0.0%
0.04
0.1 0.03
0.05 0.02
0.01

0 0

o 1 2 3 4 0o 1 2 3 4

Temperature mean (left) and standard deviation (right)at t = 20.
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Mean and Standard deviation of the vorticity field.

0 1 2 3 4
Vorticity mean (left) and standard deviation (right)at t = 20.
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(Non-intrusive techniques)

o Let {¢) ... £(™} be the set of regression points, such
that ) € Q¢,i=1,...,m,
@ Let SU) be the solution of deterministic problem
M (s(’), D(E(i))) =0,fori=1,...,m.
@ Determine Sy, k =0,...,P, that minimizes the distance

m P 2
d2 = Z Wi (S(i) — Z Sk\Uk (ﬁ(i)>> .
i=1 k=0

Advantages/issues «Return

@ Works with a subset of the solution or by-products.
@ Convergence with number of regression points m.
@ Selection of the regression points.

@ Error estimate.
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Non intrusive

Make use of the orthogonality of the basis :
(5w = (¥7) 8= | S©Vep(©de.
13

Computation of P + 1 N-dimensional integrals
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Non intrusive

Make use of the orthogonality of the basis :
(5w = (V) S = [ S@wie)p(ede.
3

Computation of P + 1 N-dimensional integrals

(Quasi) Monte-Carlo sampling

(SW) ~ % i ws (5(’7) Wy (5(’7) .

i=1

@ Convergence rate.
@ Error estimate
@ Optimal sampling strategy.
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Non intrusive

Make use of the orthogonality of the basis :

<swk>—<wk>skNZW S (60) vy (¢0).

Computation of P 4+ 1 N- dlmen3|onal integrals

Numerical quadrature

Quadrature points ¢() and weights w() obtained by

@ full tensorisation of n points 1-D quadrature formula (e.g.
Gauss formula) : Ng = nV|.

@ partial tensorization of nested 1-D quadrature formula
(Féjer, Clenshaw-Curtis) : Ng < nV|.

@ Cost for large stochastic dimension N.

@ Projection of non-polynomial solutions.
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Example of GPC failure
X ,dX dn _ 35 15 A T
o f = SUx3 . T x : 2 N
a2 g T Tax T 27 Tt A\
with friction f > 0. R
Uncertain initial conditions :
aX
X(tzoag):X0+AX£7 r :07
at |,

with ¢ U.D. on [—1, 1] (Legendre basis).
Solution : The system has two stable fixed points
(X? = 15/35). Uncertainty in IC can lead to one fixed point or
the other!
Stochastic solution may exhibit discontinuities.
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Legendre solution

Parameters and solution method

f=2., Xp =0.05 AX = 0.2; equation is time integrated using
RK(3) and Galerkin projection.

v

Results for No = 3,5and 9

Conclusion

Global polynomials (C°) can hardly represent discontinuous
solution (Gibbs’ oscillations).
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Wiener-Haar solution

Parameters and solution method

f=2,Xy=0.05 AX =0.2; equation is time integrated using
RK(3) and Galerkin projection.

<

Results for Nr = 2,3 and 5

Details are not necessary evrywhere : adaptive method.
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