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Simulation and errors

Simulation framework.

Basic ingredients
Understanding of the physics involved (optional ?) :

selection of the mathematical model.
Numerical method(s) to solve the model.
Specify a set of data :

select a system among the class spanned by the model.

Simulation errors
Model errors : physical approximations and simplifications.
Numerical errors : discretization, approximate solvers,
finite arithmetics.
Data error : boundary/initial conditions, model constants
and parameters, external forcings, . . .
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Data uncertainty

Sources of data uncertainty
Inherent variability (e.g. industrial processes).
Epistemologic uncertainty (e.g. model constants).
May not be fully reductible, even theoretically.

Probabilistic framework
Define an abstract probability space (Ω,A,dµ).
Consider data D as random quantity : D(ω), ω ∈ Ω.
Simulation output S is random and on (Ω,A,dµ).

Data D and simulation output S are dependent random
quantities (through the mathematical model M) :

M(S(ω),D(ω)) = 0, ∀ω ∈ Ω.
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Data uncertainty

Propagation and Quantification of data uncertainty

Data density

M(S,D) = 0

Solution density

Variability in model output : numerical error bars.
Assessment of predictability.
Support decision making process.
What type of information (abstract quantities, confidence
intervals, density estimations, structure of dependencies,
. . .) one needs ?
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Alternative UQ methods

Deterministic methods
Sensitivity analysis (adjoint based, AD, . . .) : local.
Perturbation techniques : limited to low order and simple
data uncertainty.
Neuman expansions : limited to low expansion order.
Moments method : closure problem (non-Gaussian /
non-linear problems).

Simulation techniques Monte-Carlo

Spectral Methods
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Alternative UQ methods

Deterministic methods

Simulation techniques Monte-Carlo
Generate a sample set of data realizations and compute
the corresponding sample set of model ouput.
Use sample set based random estimates of abstract
characterizations (moments, correlations, . . .).
Plus : Very robust and re-use deterministic codes :
(parallelization, complex data uncertainty).
Minus : slow convergence of the random estimates with
the sample set dimension.

Spectral Methods
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Alternative UQ methods

Deterministic methods

Simulation techniques Monte-Carlo

Spectral Methods
Parametrization of the data with random variables (RVs).
⊥ projection of solution on the space spanned by the RVs.
Plus : arbitrary level of uncertainty, deterministic
approach, convergence rate, information contained.
Minus : parametrizations (limited # of RVs), adaptation
of simulation tools (legacy codes), robustness
(non-linear problems, non-smooth output, . . .).
Constant developments and improvements (be
faithfull !).
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Generalized PC expansion

Polynomial Chaos expansion Wiener-1938

Any well behaved RV θ(ω) (e.g. 2nd order one) defined on
(Ω,A,dµ) has a convergent expansion of the form :

θ(ω) = u0Γ0 +
∞∑

i1=1

θi1Γ1(ξi1(ω)) +
∞∑

i1=1

i1∑
i2=1

θi1,i2Γ2(ξi1(ω), ξi2(ω))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

θi1,i2,i3Γ3(ξi1(ω), ξi2(ω), ξi3(ω)) + . . .

{ξ1, ξ2, . . .} : independent normalized Gaussian RVs.
Γp polynomials with degree p, orthogonal to Γq,∀q < p.
Convergence in the mean square sense (Cameron and
Martin, 1947).
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Generalized PC expansion

Polynomial Chaos expansion Wiener-1938

Truncated PC expansion at order p and n RVs :

θ(ω) ≈
P∑

k=0

θkΨk (ξ(ω)), ξ = {ξ1, . . . , ξn}, P =
(n + p)!

n!p!
.

{θk}k=0,...,P : deterministic expansion coefficients,
{Ψk}k=0,...,P : ⊥ random polynomials for the inner
product defined with the density of ξ as weight :

〈ΨkΨl〉 ≡
∫

Ω

Ψk (ξ(ω))Ψl(ξ(ω))dµ(ω)

=

∫
Ψk (ξ)Ψl(ξ)p(ξ)dξ = δkl

〈
Ψ2

k
〉
.

p(ξ) =
∏n

i=1
exp(−ξ2

i /2)√
2π

=⇒ Ψk (ξ) : Hermite polynomials

{Ψ0,Ψ1, . . .} is an Hilbert basis of L2(Ωξ,p(ξ)).
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Generalized PC expansion

Polynomial Chaos expansion Wiener-1938

Truncated PC expansion : θ(ω) ≈
∑P

k=0 θkΨk (ξ(ω)).
Convention Ψ0 ≡ 1 : mean mode.
Expectation of θ :

E [θ] ≡
∫

Ω

θ(ω)dµ(ω) ≈
P∑

k=0

θk

∫
Ωξ

Ψk (ξ)p(ξ)dξ = θ0.

Variance of θ :

V [θ] = E [θ2]− E [θ]2 ≈
P∑

k=1

θ2
k 〈ΨkΨk 〉 .

Extension to random vectors & stochastic processes : θ1
...
θm

 (ω,x , t) ≈
P∑

k=0

 θ1
...
θm


k

(x , t) Ψk (ξ(ω)).
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Generalized PC expansion

Generalized PC expansion Xiu and Karniadakis-2002

Askey scheme

Distribution of ξi Polynomial familly
Gaussian Hermite
Uniform Legendre
Exponential Laguerre
β-distribution Jacobi

Also : discrete RVs (Poisson process).

θ(ω) ≈
∑P

k=0 θkΨk (ξ(ω))

where Ψk : classical (or mixture of) polynomials.
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Application to spectral UQ

Data parametrization
Parametrization of D using N <∞ independent RVs with
prescribed distribution p(ξ) :

D(ω) = D(ξ(ω)), ξ = (ξ1, . . . , ξN) ∈ Ωξ.

Transformation of random variables : D(ω) RV.
Karhunen-Loève expansion : D(x , ω) stochastic process.
Independent components analysis.

Model

Solution expansion
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Application to spectral UQ

Data parametrization

Model
We assume that ∀ξ(ω) ∈ Ωξ, the problem M(S,D(ξ(ω)) = 0

1 is well-posed,
2 has a unique solution, denoted S(ξ(ω)),

and that the random solution S ∈ L2(Ωξ,pξ) :

〈
S2
〉

=

∫
Ω

S2(ξ(ω))dµ(ω) =

∫
Ωξ

S2(ξ)p(ξ)dξ < +∞.

Solution expansion
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Application to spectral UQ

Data parametrization

Model

Solution expansion
Let {Ψ0,Ψ1, . . .} be a Hilbert basis of L2(Ωξ,pξ) then

S(ξ(ω)) =
∑

k

SkΨk (ξ(ω)).

Knowledge of the spectral coefficients Sk fully
determine the random solution.
Makes explicit the dependence between D(ξ) and S(ξ).

Need efficient procedure to compute the Sk .
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Solution Techniques

Non intrusive techniques
Compute/estimate spectral coefficients via a set of
deterministic model solutions.
Requires a deterministic solver only.
Overcome issues related to non-linearities.
Suffers from the curse of dimensionnality. NI-techniques

Galerkin projection
Weak solution of the stochastic problem M(S,D) = 0.
Needs adaptation of deterministic codes.
Usually more efficient than NI techniques.
Better suited to improvement (error estimate, optimal and
basis reduction, . . .), thanks to spectral theory and
functional analysis.
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Solution Techniques

Galerkin projection Method of weighted residual

¬ Introduce truncated expansions in model equations.
­ Require residual to be ⊥ to the subspace.〈

M

(
P∑

k=0

SkΨk (ξ),D(ξ)

)
Ψm(ξ)

〉
= 0 for m = 0, . . . ,P.

Set of P + 1 coupled problems.

Plus
Implicitly account for
modes’ coupling.
Often inherit properties of
the deterministic model.

Minus
Requires adaptation of
deterministic solvers.
Treatment of
non-linearities.
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Examples of Application to Fluid Flows

Natural convection : Boussinesq approximation Goto example

Natural convection : Low-Mach approximation Goto example

Electrophoresis : coupled physical problems Goto example

Lagrangian formulation : particle method Goto example
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Multi-resolution-analysis

Motivations

GPC expansions fail for some problems because of : Example

¬ Non-linearities requiring large polynomial orders for
global approximation over uncertainty range.

­ Non-smooth or steep dependences of the solution w.r.t.
the uncertain data (e.g. parametric bifurcations, absolute
value, threshold effect, . . .).

® Oscillating character of the polynomials.

Response : Le Maître et al, JCPs (2004).

Wiener-type orthogonal expansion (multiwavelets) using
Multi-Resolution-Analysis .

3 Piecewise polynomial.
3 Convergence in polynomial

order and resolution level.

3 Discontinuous dependences.
3 Local control of the resolution.
3 Adaptive strategy.
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Multi-resolution-analysis

Multi-resolution space

For No = 0,1, . . . and k = 0,1, . . . , VNo
k is the space of

piecewise polynomial functions f : x ∈ [−1,1] 7→ R :

VNo
k ≡

{
f : the restriction of f on (2−k l ,2−k (l + 1)) ∈ PNo

for l = 0, . . . ,2k − 1
}
,

where PNo is the space of polynomials with degree ≤ No.
We have :

Dim(VNo
k ) = (No + 1)(2k ),

VNo
0 ⊂ VNo

1 ⊂ · · · ⊂ VNo
k ⊂ . . .

VNo ≡
⋃

k≥0VNo
k is dense in L2([0,1]) with the scalar

product

〈f ,g〉 =

∫ 1

0
f (x)g(x)dx .
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Multi-resolution-analysis

Multi-wavelet space

Let us denote WNo
k , k = 0,1,2, . . . , the orthogonal complement

of VNo
k in VNo

k+1 :

VNo
k ⊕WNo

k = VNo
k+1, WNo

k ⊥ VNo
k ,

so
VNo

0

⊕
k≥0

WNo
k = L2([0,1]).

Let {ψ0, ψ1, . . . , ψNo} be an orthonormal basis of WNo
0 :〈

ψi(x), ψj(x)
〉

= δij ,

and since WNo
0 ⊥ VNo

0 we have〈
ψj , x i

〉
= 0, 0 ≤ i , j ≤ No.
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Multi-resolution-analysis

Multi-wavelet space

The ψj are the generating functions of the MRA system.
No = 1 No = 2
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Multi-resolution-analysis

Multi-wavelet space

The ψj are the generating functions of the MRA system.

Multi-wavelets ψk
jl

ψk
jl (x) = 2k/2ψj(2kx − l), j = 0, . . . ,No, and l = 0, . . . ,2k − 1.

Supp(ψk
jl ) = [2−k l ,2−k (l + 1)].〈

ψk
il , ψ

k ′

jm

〉
= δijδlmδkk ′ .

Basis of VNo
0 Legendre polynomials

φi(x) =
Lei(2x − 1)

Li
, i = 0,1, . . . ,No,〈

φi(x), φj(x)
〉

= δij for i , j = 0, . . . ,No.
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Multi-resolution-analysis

Projection on VNo
Nr

Let us denote f No,Nr the projection of f on VNo
Nr :

f No,Nr(x) ≡ PNo
Nr [f ] =

No∑
i=0

fiψi(x) +
Nr−1∑
k=0

2k−1∑
l=0

(
No∑
i=0

δf k
il ψ

k
il (x)

)
,

where

fi = 〈f , φi〉 ,and δf k
il =

〈{
PNo

k+1 [f ]− PNo
k [f ]

}
, ψk

il

〉
.

For f ∈ L2([0,1]), the projection error can be made
arbitrarily small by increasing the expansion order No

and/or resolution level Nr.
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Multi-resolution-analysis

Application of MRA to UQ

One-dimensional case

ξ(ω) : RV with density pdf(ξ), CDF q(ξ) =
∫ ξ
−∞ pdf(ξ′)dξ′.

θ(ξ) ∈ L2(Ωξ).

θ(ξ) = θ(q−1(x)) = θ̃(x) for x ∼ U(0,1).
θ̃(x) ∈ L2([0,1]).

θ̃(x(ω)) ≈
∑

k

θ̃kWk (x(ω)), x ∼ U(0,1),

Wk elements of the MRA system.
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Multi-resolution-analysis

Application of MRA to UQ

N-dimensionnal case
Proceed by tensorization of 1-D MRA system.
θ̃(x) ≡ θ̃(x1, . . . , xN) ≈

∑
k θ̃kM

w
k (x1, . . . , xN).

Mw
k (x) = Wk1(x1)× · · · ×WkN(xN).

Summary
Expansion in terms of CDF of random parameters.
Piecewise polynomial approximation.
Error reduction through p (No) or h (Nr) refinement.
Fast increase with No, Nr and N of approximation
space’s dimension (calls for adaptive techniques).

Example



Introduction Spectral UQ Examples : Fluid flows Advanced Topics Conclusive remarks

Multi-resolution-analysis

Rayleigh-Bénard Instability

j Aspect ratio : A = L/H = 2 ;

j Prandtl number : Pr =
µCp
κ = 0.7 ;

j Rayleigh number : Ra = ρgβ∆TH3

µκ .

Model : Boussinesq equations.
Parameter and uncertainty :

Ra = 2150 (slightly above critical)
Θhot(ξ) = 1

2 + 0.2ξ, ξ U.D. in [−1,1]

Both conductive and convective regimes are explored.

The process has a discontinuity in the uncertainty range.
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Multi-resolution-analysis

Comparison Legendre / Wiener-Haar (Nr = 5) solutions.

Kinetic energy as function of θhot(ξ).

Heat transfer enhancement as a function of θhot(ξ).
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Multi-resolution-analysis

Hierarchy of velocity and temperature modes (Wiener-Haar)

Cold Hot
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Multi-resolution-analysis

Heat-transfer enhancement (from conduct. solution).

Adaptive MRA scheme for No = 1,2 and 3

Only details around critical points are computed.
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Adaptive Techniques

Limitations of MRA
4 Fast increase of the basis dimension with No and

resolution level Nr.
4 Adaptivity possible but quickly cumbersome with

increasing N( number of stochastic dimensions).

A More efficient approach
Remark : Spectral problems present no differential operator
along stochastic dimensions. (Model solutions for different
data are independent)

é Strongly suggests a domain decomposition technique in
the parameter space Ωξ = [0,1]N.
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Adaptive Techniques

Partition of the random parameter space

Domain decomposition.

Basic principle : zooming.
4 Define a generic expansion basis for [0,1]N :

N-Dimensional Legendre basis
+

1-D first resolution level Multi-Wavelets.
4 Rescale and translate this basis to expand locally the

solution on non-overlapping sub-domains Ωi ⊂ [0,1]N.
4 Decide if the expansion is sufficient over Ωi ; If not :

break it into smaller sub-domains
along under-resolved dimensions only

4 Refinement strategy based on 1-D details.
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Adaptive Techniques

Reaction surface problem No = 3

Governing equations :
dρ
dt

= α(1− ρ)− γρ

−β(ρ− 1)ρ2

ρ(t = 0) = ρ0

Uncertainty

3 ρ0 ∼ U(0,1).
3 β ∼ U(0,20).
3 ρ0, β ind. RVs.

⇒ 2 Stochastic dim.

Convergence with εr :

Applied for up to 8 stochastic dimensions and a complex
chemical mechanism (Le Maître et al, J. Sci. Comp. 2007.)
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A posterior error estimation

A posterior error estimation (Lionel Mathelin, LIMSI-CNRS)

Objective : design less heuristic criteria / error indicator.

Variational framework
Solve for U(x ∈ Ωx , ξ ∈ Ωξ) ∈ Vx ⊗ Vξ

A(U; Φ|D) = B(Φ|D) ∀Φ ∈ Vx ⊗ Vξ,

where :
Vx suitable deterministic Hilbert space,
Vξ ≡ L2(Ωξ,pξ) space of 2nd order RV,
A(U; Φ|D) =

∫
Ωξ

a(U(ξ); Φ(ξ)|D(ξ))pξ(ξ)dξ,

B(Φ|D) =
∫
Ωξ

b(Φ(ξ)|D(ξ))pξ(ξ)dξ,,

a(.; .|.) a deterministic semi-linear form,
b(.|.) a linear form.
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A posterior error estimation

Deterministic finite element space

Ωx =
⋃Nx

l=1 Ω
(l)
x .

Uh(x ∈ Ω
(l)
x ) =

∑Nd(l)
i=1 U(l)

i N (l)
i (x).

Vh
x = span

(
{N (l)

i }, 1 ≤ l ≤ Nx , 1 ≤ i ≤ Nd(l)
)
.

Stochastic space

Ωξ =
⋃Nb

m=1 Ω
(m)
ξ ,

Ω
(m)
ξ = [ξ

(m),−
1 , ξ

(m),+
1 ]× · · · × [ξ

(m),−
N , ξ

(m),+
N ],

Uh(ξ ∈ Ω
(m)
ξ ) =

∑P(m)
k=0 u(m)

k Ψ
(m)
k (ξ),

Vh
ξ = span

({
Ψ

(m)
k

}
, 1 ≤ m ≤ Nb, 0 ≤ k ≤ P(m)

)
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A posterior error estimation

Approximation space

Vh = Vh
x ⊗ Vh

ξ .

The approximate solution at point (x , ξ) of Ω ≡ Ωx × Ωξ, is
Uh
(

x ∈ Ω
(l)
x , ξ ∈ Ω

(m)
ξ

)
=
∑Nd(l)

i=1
∑P(m)

k=0 u(l,m)
i,k N (l)

i (x) Ψ
(m)
k (ξ)

and solves

A(Uh; Φh|Dh) = B(Φh|Dh) ∀Φh ∈ Vh.

Error estimation
For J : Ωx × Ωξ 7→ R, the approximation error is measured as

η =
∣∣∣J (U)− J

(
Uh
)∣∣∣ .

The exact solution being unknown η has to be estimated.
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A posterior error estimation

Dual-based error estimate

J (U)− J
(
Uh) ≈ B(Z̃ − Z h|Dh)− A(Uh; Z̃ − Z h|Dh),

where
Z h is the approximate dual solution satisfying

J ′(Uh; Φ)− A′(Uh; Φ,Z h|Dh) = 0 ∀Φ ∈ Vh,

Z̃ ∈ Veh ⊃ Vh an estimate of the exact dual solution :
J ′(Uh; Φ̃)− A′(Uh; Φ̃, Z̃ |Deh) = 0 ∀Φ̃ ∈ Veh.

In practice : Veh is constructed by increasing the stochastic and
finite element orders of Vh.
Remark : Dual problems are linear, primes denote Gateau
derivatives :

J ′(U,Φ) = lim
ε→0

J (U)− J(U + εΦ)

ε
.
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A posterior error estimation

Local error estimate

η =
∣∣∣J (U)− J (Uh)

∣∣∣ ≤ Nx∑
l=1

Nb∑
m=1

ηl,m,

where ηl,m is the local contribution of
(
Ω

(l)
x × Ω

(m)
ξ

)
to the

aposteriori error estimation.
To ensure η < ε, the approximation space Vh is refined such
that

ηl,m <
εη

NxNb
= ε, ∀l ,m ∈ [1,Nx ]× [1,Nb].

Refinement scheme
Refine Vx or Vξ ?
What type of refinement : h or p ?
If hξ, then along which stochastic dimension(s) ?
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A posterior error estimation

Example : Burger’s equation with uncertain viscosity (N = 2).
Vh

x : 10 spectral finite elements (order 15).
Stochastic order No = 2 with isotropic hξ-refinement.

u(θ)
∂u(θ)

∂x
= ν(θ)

∂2x(θ)

∂x2 .

Errors on computed mean and variance
as a function of the number of primal and
dual problems solved. Comparison of
adaptive and uniform refinements.

(Mathelin and Le Maître, Com. Appl. Math and Comp., 2007)
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A posterior error estimation

Outline

1 Introduction
Simulation and errors
Data uncertainty
Alternative UQ methods

2 Spectral UQ
Generalized PC expansion
Application to spectral UQ
Solution Techniques

3 Examples : Fluid flows
4 Advanced Topics

Multi-resolution-analysis
Adaptive Techniques
A posterior error estimation

5 Conclusive remarks
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Improvement of Spectral UQ
Computational efficiency (steady-solvers, pre-conditioning,
multigrid techniques,. . .).
Development of directional error estimates to improve
adaptive techniques.
Construction of reduced basis.
Adaptive non-intrusive technique.

Open problems
Existence/treatment of multiple solutions !
Stochastic eigen-value problems (many issues remaining
to be addressed).
. . .
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Natural convection Boussinesq approximation

Governing equations

Momentum :
∂u
∂t

+ u ·∇u = −∇p +
Pr√
Ra

∇2u + Prθy

Mass : ∇ · u = 0

Energy :
∂θ

∂t
+ u ·∇θ =

1√
Ra
∇2θ

Uncertain boundary conditions



Appendix

Natural convection Boussinesq approximation

Governing equations

Uncertain boundary conditions

u = 0 on Γ.
∂θ(x , y = 0,1)/∂y = 0.
θ(x = 0, y) = 1/2.
θ(x = 1, y , ω) = −1/2 + θ′(y , ω).

〈θ′(y)θ′(y ′)〉 = σ2
θ exp[−|y − y ′|/L], θ′ ∼ N(0, σ2

θ ).
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Natural convection Boussinesq approximation

Governing equations

Uncertain boundary conditions

u = 0 on Γ.
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θ ).
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Natural convection Boussinesq approximation

Governing equations

Uncertain boundary conditions

u = 0 on Γ.
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θ(x = 0, y) = 1/2.
θ(x = 1, y , ω) = −1/2 + θ′(y , ω).

〈θ′(y)θ′(y ′)〉 = σ2
θ exp[−|y − y ′|/L], θ′ ∼ N(0, σ2

θ ).



Appendix

Natural convection Boussinesq approximation

Governing equations

Uncertain boundary conditions

u = 0 on Γ.
∂θ(x , y = 0,1)/∂y = 0.
θ(x = 0, y) = 1/2.
θ(x = 1, y , ω) = −1/2 + θ′(y , ω).

〈θ′(y)θ′(y ′)〉 = σ2
θ exp[−|y − y ′|/L], θ′ ∼ N(0, σ2

θ ).
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BC and solution representations

θ′(y , ξ) =
N∑

i=1

√
λi θ̃i(y)ξi =

P∑
k=0

θk (y)Ψk (ξ).

(u,p, θ)(ξ) =
P∑

k=0

(u,p, θ)kΨk (ξ).

ξi ∼ N(0,1) −→ Hermite polynomials.
Stochastic dimension N.
Expansion order No −→ P + 1 = (N + No)!/(N!No!).

Galerkin projection

Implementation and solver
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BC and solution representations

Galerkin projection

∂ui

∂t
+

P∑
j=0

P∑
k=0

uj ·∇uk

〈
ΨiΨjΨk

〉
〈ΨiΨi〉

= −∇pi +
Pr√
Ra

∇2ui + Prθiy

∂θi

∂t
+

P∑
j=0

P∑
k=0

uj ·∇θk

〈
ΨiΨjΨk

〉
〈ΨiΨi〉

=
1√
Ra

∇2θi

∇ · ui = 0

P + 1 coupled momentum and energy equations.
P + 1 uncoupled divergence constraints and BCs.

Implementation and solver
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BC and solution representations

Galerkin projection

Implementation and solver
Discretization

Uniform grid, staggered arrangement and 2nd order FD.
Semi-explicit second order Adams-Bashford time-scheme.

Incompressibility Treatment
Prediction / Projection method (Chorin).
FFT based solver for the elliptic pressure equations.

CPU : essentially projection of uncoupled modes :
Stochastic ' (P + 1) × deterministic.
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Convergence and performance (unsteady solver)

N = 4 ∼ 6 is enough for
L ≥ 1/3.
No = 3 → relative error
on variance < 10−4.
∼ 1000 times more
efficient than MC (LHS).
∼ 10 times more
efficient than NISP + GH
quadrature.

Le Maître et al, JCP (2001).
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Example of velocity modes Ra = 106,L = 1 − σθ = 0.25.

Uncertainty bars L = 1.
σθ = 0.125 σθ = 0.25 σθ = 0.5

Le Maître et al, JCP (2002).
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Example of temperature modes Ra = 106,L = 1 − σθ = 0.25.

Heat-transfert density
L = 1 − 6= σθ 6= L − σθ = 0.25

Le Maître et al, JCP (2002). Return
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Natural convection Low-Mach approximation

Formulation (Najm et al, J. Comp. Phys., 1998 & 1999).

∂ρ

∂t
=

1
γT

dP
dt

+
1
T

(
ρu ·∇T − 1

Pr
√

Ra
∇ · (κ∇T )

)
dP
dt

= −γ
∫

Ω

1
T

(
ρu ·∇T − 1

Pr
√

Ra
∇ · (κ∇T )

)
dΩ/

∫
Ω

1
T

dΩ

∂ρu
∂t

= −∂ρu2

∂x
− ∂ρuv

∂y
− ∂Π

∂x
+

1√
Ra

Φx

∂ρv
∂t

= −∂ρuv
∂x

− ∂ρv2

∂y
− ∂Π

∂y
+

1√
Ra

Φy −
1
Pr
ρ− 1

2ε

T =
P
ρ

Difficulty : non-linearities
p Exact inversion of the Galerkin product.
p Exact mass-conservation (mean sense is not enough).

Le Maître et al., J. Sci. Comp., 2004. Return
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Electrophoresis Debusschere et al, Phys. Fluids (2003)

Problem Code structure

Multi-physics : NS,
diffusion convection,
electro-osmotic flow,
chemistry (finite & infinite
rates).

Uncertainties
4 ζ potential (BCs).
4 Tension at channel

ends.
4 Reaction rates.
4 Initial conditions.

Spectral UQ (Galerkin)
Respective influences of
6= uncertainty sources.

Return
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Stochastic spectral methods for uncertainty quantification

Methodological developments
90s : Wiener-Hermite expansion of model solutions
(Ghanem & Spanos).
Applications to linear models (elasticity, thermal sciences,
porous media, . . .)
2000 : application to non-linear models : Navier-Stokes
equations, porous media, reacting flows.
2004 : development of alternative expansion basis
(generalised polynomial chaos, piecewise polynomial
expansions, wavelets).
Essentially rely on Eulerian formulations/models.

Are spectral expansions amenable to Lagrangian models ?



Appendix

Lagrangian techniques for Navier-Stokes

Particle methods
Solve (incompressible) N-S equations in rotational form.
Theoretically well grounded.
Deal with complex/moving boundary problems, infinite
domains, . . .
Immediate extension to low diffusivity/inviscid flows without
requiring stabilisation or flux limiters.
Handle transport and reactions.

Can we extend particle methods to propagate uncertainty ?
Zap determ
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2D incompressible Navier-Stokes equations

Rotational Form

∂ω

∂t
+ ∇ · (uω) = ν∆ω,

∆ψ = −ω,
u = ∇ ∧ (ψez),
ω(x ,0) = (∇ ∧ u(x ,0)) · ez
u, ω → 0 as |x | → ∞.

Velocity kernel (Biot-Savart)

u =
−1
2π
K?ω =

−1
2π

∫
R2
K(x ,y)∧(ωez)dy , K(x ,y) = (x−y)/|x−y |2.
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Particle approximation

Smooth approximation
Particles : position X i(t), circulation Γi(t), core size ε :

ω(x , t) =

Np∑
i=1

Γi(t)ζε(x − X i(t)), lim
ε→0

ζε(x) = δ(x).

Solution technique
Split convection and diffusion processes :

Convection : transport particles with flow velocity.
Diffusion : update particle circulations to account for
diffusion (Particle Strength Exchange method).

Zap details
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Solution method

Convection step

dX i

dt
=
−1
2π

Np∑
j=1

ΓjKε(X i ,X j),
dΓi

dt
= 0.

Kε : regularised Biot-Savart kernel.
Reduce to ODE, but complexity in O(Np2).

Acceleration of velocity computation
Multipoles expansion → O(Np).
Particle-mesh techniques :

1 Project circulations Γi on an Eulerian mesh.
2 Solve ∇2Ψ = −ω (using FFT based solver for instance).
3 Interpolate at X i to obtain particle velocities.
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Solution method

Integral representation of differential operators
Let η(x) a radial function such that∫

R2
x2η(x)dx =

∫
R2

y2η(x) = 2,∫
R2

xα1yα2η(x)dx = 0, 1 ≤ α1 + α2 ≤ m + 1, α1, α2 6= 2,

then for positive integer multi-index β and ηε(x) ≡ η(x/ε)/ε2 we have

∂|β|

∂xβ1
1 . . . ∂xβd

d

f (x) =
1
ε|β|

∫
[f (y)+(−1)|β|+1f (x)]η(β)

ε (x−y)dy+O(εm).

Degond & Mas-Gallic (1989), Eldredge et al (2002).
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Solution method

Diffusion term

dΓi

dt
= ν

Np∑
j=1

L(X i − X j)S
[
Γj − Γi

]
.

Use compact functions η so only particles within a few
core-size distances contribute.

Summary

dX i

dt
=

−1
2π

Np∑
j=1

ΓjKε(X i ,X j),

dΓi

dt
= ν

Np∑
j=1

L(X i − X j)S [Γj − Γi ] .
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Direct spectral expansion : the bad way !

Set both particle positions and circulations as uncertain :

X i(t , ξ) =
∑

k

[X i ]k (t)Ψk (ξ), Γi(t , ξ) =
∑

k

[Γi ]k (t)Ψk (ξ).

Apply Galerkin projection to particle problem :

〈
Ψ2

k
〉 d [X i ]k

dt
=

−1
2π

Np∑
j=1

〈Ψk (ξ)Γj(ξ)Kε(X i(ξ),X j(ξ))〉 ,

〈
Ψ2

k
〉 d [Γi ]k

dt
=

〈
Ψk (ξ)ν(ξ)

Np∑
j=1

L(X i(ξ)− X j(ξ))S [Γj(ξ)− Γi(ξ)]

〉
.

Requires stochastic projection of the kernels.
Fast algorithms for velocity estimation are impossible.

Untractable problem
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Continuous stochastic problem : a better approach

Let’s go back to the continuous vorticity equation :

∂ω(ξ)

∂t
+ u(ξ)∇ω(ξ) = ν(ξ)∇2ω(ξ), ω(x , t , ξ) =

∑
k

[ω]k (x , t)Ψk (ξ).

The Galerkin projection gives :

∂[ω]k
∂t

+
∑
i,j

Cijk [u]i∇[ω]j =
∑
i,j

Cijk [ν]i∇
2[ω]j , Cijk =

〈ΨiΨjΨk 〉〈
Ψ2

k

〉 ,

or, since by convention Ψ0 = 1 ⇒ C0jk = δjk and

∂[ω]k
∂t

+ [u]0∇[ω]k = −
∑
i 6=0,j

Cijk [u]i∇[ω]j +
∑
i,j

Cijk [ν]i∇
2[ω]j .

Stochastic modes are convected with the mean flow [u]0.
Interactions with other modes are treated as source terms
using integral approximations (PSE).
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Particle approximation of the stochastic problem

Particles with stochastic strengths Γi(t , ξ) =
∑

k [Γi ]k (t)Ψk (ξ).

dX i

dt
= [U i ]0,

d [Γi ]k
dt

= −
Np∑
j=1

P∑
l=1

P∑
m=0

CklmS
{
Gx(X i − X j)

(
[Ui ]l [Γi ]m + [Uj ]l [Γj ]m

)
+ Gy (X i − X j)

(
[Vi ]l [Γi ]m + [Vj ]l [Γj ]m

)}
+

Np∑
j=1

P∑
l=0

P∑
m=0

CklmS[ν]lL(X i − X j)
(
[Γj ]m − [Γi ]m

)
,

[U i ]k =
−1
2π

Np∑
j=1

[Γj ]kKε(X i ,X j).

Kernels are evaluated only once for all modes.

Fast algorithms for velocity computation are still possible.

Formulation is conservative.
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Lagrangian formulation Le Maître and Knio, J. Comp. Phys. (2007)

Particle method
Particles with

deterministic positions,
stochastic strengths (circulation & heat).

Time-integration : RK-3
Particles convected by the mean flow.
Integral representation of stochastic modes interactions.

Code efficiency
Stable and diffusion free convection step.
Fast algorithms for stochastic velocity calculation (e.g. FFT
based, multipole expansion) : O(n log n).
Conservative method (regridding).



Appendix

Results (I) Convection of a passive scalar

Stochastic equations

∂c
∂t

+ U ·∇c = 0,

c(x , t , ξ) = exp
[
−‖x − x0‖2/πd2‖x0‖

]
, x0 = ey ,

U(x , ξ) = −(1 + 0.075ξ)x ∧ ez , ξ ∼ U[−1,1].

Discretization
Particle positions X i(t), ε = 0.025.
Particle strengths Ci(t , ξ) =

∑
k [Ci ]k (t)Ψk (ξ).

Stochastic basis : Legendre polynomial.
Stochastic order up to No = 20.
RK-3 with ∆t = 2π/400.
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Mean and Standard deviation of c(x , t , ξ).

Mean (top row) and standard deviation (bottom row) of the
scalar field after 1 revolution (left) and 2 revolutions (right).
No = 20.
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Results (II) Evolution of a radial vortex

Equations

∂ω

∂t
+ u ·∇ω = ν∇2ω,

ω(x , t = 0) =
exp[−‖x‖2/d ]

πd
,

ν = 0.005 + 0.0025ξ, ξ ∼ U(−1,1).

Discretization
ε = 0.05, remeshing every 10 iterations.
Simulation for t ∈ [0,30], ∆t = 0.02 with RK-3.
Velocities computed with particle-mesh scheme hg = ε.
Wiener Legendre expansion with No = 5.
Check the invariants of the flow.
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Mean and Standard deviation of ω(x , t , ξ).

Mean (top row) and standard deviation (bottom row) at different
times.
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Results (III) Natural convection problem

Equations
Evolution of a compact hot patch of air in infinite medium.
Boussinesq approximation : incompressible Navier-Stokes
+ buoyancy terms and heat transport equation.
Uncertainty and the Rayleigh number in the
Ra ∼ U[2.105,3.105].

Discretization
ε = 1/30.
Simulation for t ∈ [0,28], ∆t = 0.2 with RK-2.
Remeshing every 4 iterations : Np > 200,000 at the end of
the simulation.
Velocities computed with particle-mesh scheme hg = ε.
Wiener Legendre expansion with up to No = 12.
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Mean and Standard deviation of the temperature field.

Temperature mean (left) and standard deviation (right)at t = 20.
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Mean and Standard deviation of the vorticity field.

Vorticity mean (left) and standard deviation (right)at t = 20.
Return
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(Non-intrusive techniques) Regression

Let {ξ(1), . . . , ξ(m)} be the set of regression points, such
that ξ(i) ∈ Ωξ, i = 1, . . . ,m.
Let S(i) be the solution of deterministic problem

M
(

s(i),D(ξ(i))
)

= 0, for i = 1, . . . ,m.

Determine Sk , k = 0, . . . ,P, that minimizes the distance

d2 =
m∑

i=1

wi

(
S(i) −

P∑
k=0

SkΨk

(
ξ(i)
))2

.

Advantages/issues Return

Works with a subset of the solution or by-products.
Convergence with number of regression points m.
Selection of the regression points.
Error estimate.
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Non intrusive projection

Make use of the orthogonality of the basis :

〈SΨk 〉 =
〈
Ψ2

k

〉
Sk =

∫
Ωξ

S(ξ)Ψk (ξ)p(ξ)dξ.

Computation of P + 1 N-dimensional integrals
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Non intrusive projection

Make use of the orthogonality of the basis :

〈SΨk 〉 =
〈
Ψ2

k

〉
Sk =

∫
Ωξ

S(ξ)Ψk (ξ)p(ξ)dξ.

Computation of P + 1 N-dimensional integrals

(Quasi) Monte-Carlo sampling

〈SΨk 〉 ≈
1
m

m∑
i=1

w (i)S
(
ξ(i)
)

Ψk

(
ξ(i)
)
.

Convergence rate.
Error estimate
Optimal sampling strategy.
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Non intrusive projection

Make use of the orthogonality of the basis :

〈SΨk 〉 =
〈
Ψ2

k

〉
Sk ≈

NQ∑
i=1

w (i)S
(
ξ(i)
)

Ψk

(
ξ(i)
)
.

Computation of P + 1 N-dimensional integrals

Numerical quadrature

Quadrature points ξ(i) and weights w (i) obtained by
full tensorisation of n points 1-D quadrature formula (e.g.
Gauss formula) : NQ = nN .

partial tensorization of nested 1-D quadrature formula
(Féjer, Clenshaw-Curtis) : NQ < nN .

Cost for large stochastic dimension N.
Projection of non-polynomial solutions. Return
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Example of GPC failure Rolling-ball problem

d2X
dt2 + f

dX
dt

= − dh
dX

≡ −35
2

X 3 +
15
2

X ,

with friction f ≥ 0.
Uncertain initial conditions :

X (t = 0, ξ) = X0 + ∆Xξ,
dX
dt

∣∣∣∣
t=0

= 0,

with ξ U.D. on [−1,1] (Legendre basis).
Solution : The system has two stable fixed points
(X 2 = 15/35). Uncertainty in IC can lead to one fixed point or
the other !

Stochastic solution may exhibit discontinuities.
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Legendre solution Rolling-ball problem

Parameters and solution method
f = 2., X0 = 0.05, ∆X = 0.2 ; equation is time integrated using
RK(3) and Galerkin projection.

Results for No = 3,5 and 9

Conclusion
Global polynomials (C∞) can hardly represent discontinuous
solution (Gibbs’ oscillations). Return
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Wiener-Haar solution Rolling-ball problem

Parameters and solution method
f = 2., X0 = 0.05, ∆X = 0.2 ; equation is time integrated using
RK(3) and Galerkin projection.

Results for Nr = 2,3 and 5

Remark
Details are not necessary evrywhere : adaptive method. Return
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