

OPTIMISATION MULTICRITERE STOCHASTIQUE

Michel DUMAS, Gilles ARNAUD, Fabrice GAUDIER CEA/DEN/DM2S/SFME/LETR

michel.dumas@cea.fr gilles.arnaud@cea.fr fabrice.gaudier @cea.fr

L 'optimisation

multicritère

stochastique

Optimisation monocritère

Problème d'optimisation

$$f: D \to R$$

$$\min_{x \in D} f(x) = f_{min}$$

$$\forall x \in D \quad f_{min} \le f(x)$$

Optimisation **continue**: $D \subset R^n$

Optimisation combinatoire:

D est un ensemble fini :

$$D \equiv \{0,1\}^n, D \subset N, D \equiv S^n$$

Optimisation multicritère

Problème d'optimisation multicritère

$$f: D \to R^p$$

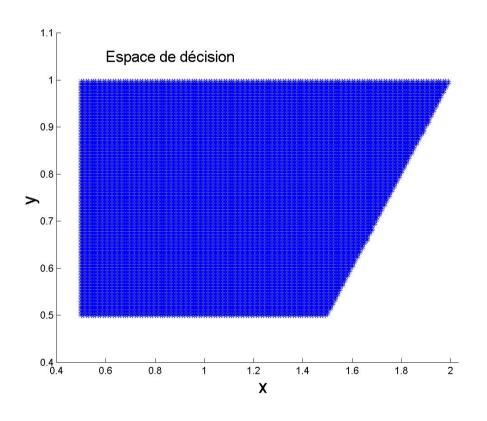
$$\min_{x \in D} f(x) = \min \left\{ f_1(x), f_2(x), \dots, f_p(x) \right\}$$

La notion d'optimum global:

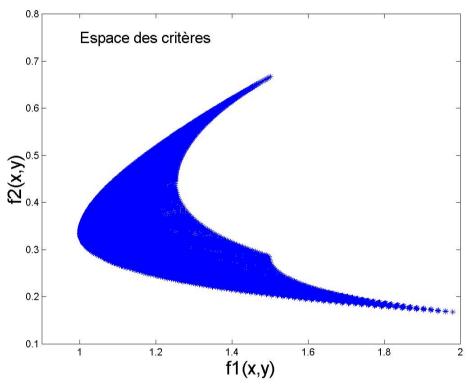
$$\forall x \in D$$
 $f_{\min} \le f(x)$ n'a plus de sens!

 \leq n'est pas une relation d'ordre totale dans R^p

Exemple



$$0.5 \le x \le 2, 0.5 \le y \le 1, x \le y + 1$$



$$f_1(x, y) = (x-1)^2 + (y-1)^2 + 1$$
$$f_2(x, y) = \frac{1}{x^2 + y^2 + 1}$$

Relation de dominance

On définit une **relation de dominance** entre solutions :

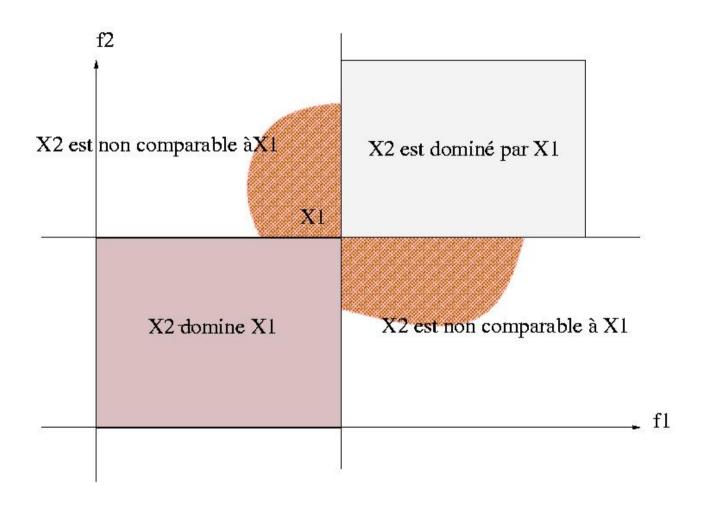
 $x1 \in A$ domine $x2 \in A$ ssi:

1.
$$\forall j \in \{1, p\} \ f_j(x1) \le f_j(x2)$$

2.
$$\exists j_0 \in \{1, p\} \ f_{j_0}(x_1) < f_{j_0}(x_2)$$

Si une des conditions est violée x1 ne domine pas x2

Relation de dominance



Pareto-optimalité

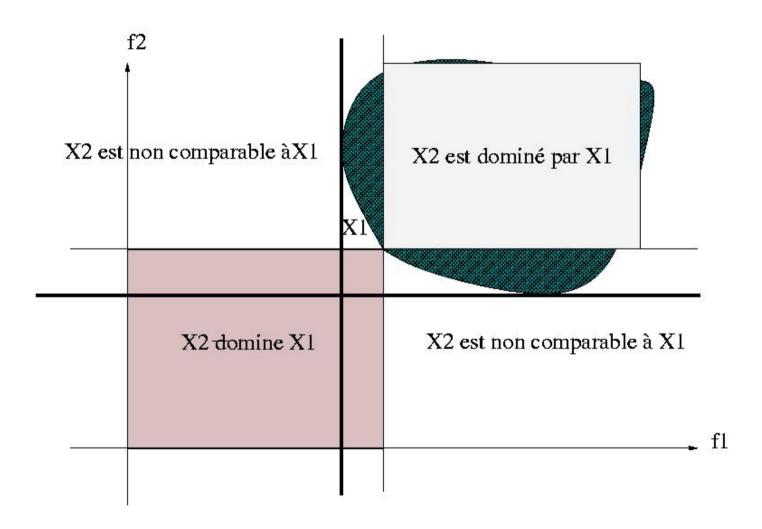
Optimalité au sens de Pareto

Si une solution n'est dominée par aucune autre elle est **optimale au sens de Pareto**.

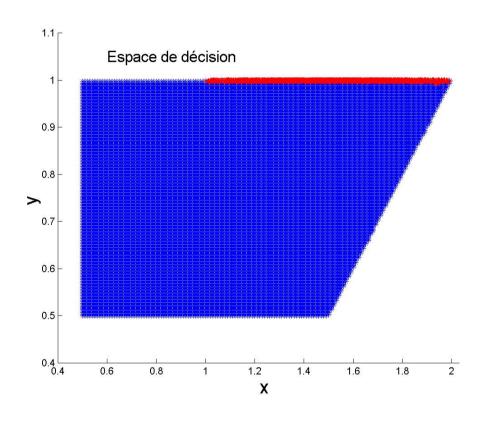
L'ensemble des solutions **non dominées** i.d. celles qui dominent les autres mais ne se dominent pas entre elles sont Pareto-optimales.

Elles forment Z: la **zone de Pareto** $Z \subseteq A \subseteq R^n$ L'image de Z dans l'espace des critères R^p est le **front de Pareto**

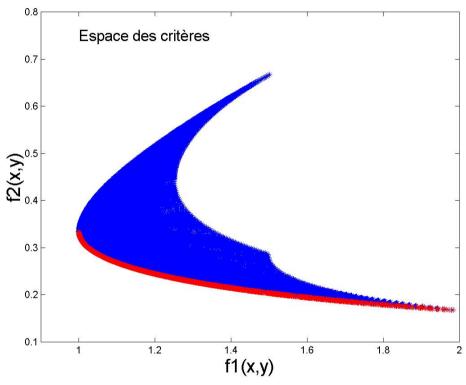
Pareto-optimalité



Exemple



$$0.5 \le x \le 2, 0.5 \le y \le 1, x \le y + 1$$



$$f_1(x, y) = (x-1)^2 + (y-1)^2 + 1$$
$$f_2(x, y) = \frac{1}{x^2 + y^2 + 1}$$

Nouvelles méthodes

A nouveaux problèmes, nouvelles solutions

Les métaheuristiques :

Recuit simulé, recherche tabou, colonies de fourmis, les algorithmes évolutionnaires (génétiques), etc.

- s'attaquent aux problèmes « difficiles »
- évitent le piège des minima locaux
- fournissent des ensembles de solutions
- présentent un caractère stochastique

Les Algorithmes « évolutionnaires »

Métaphore biologique :

L'évolution d'une population d'individus Au cours des générations :

Sélection « naturelle » => « adaptation » des individus

Mesure de l'adaptation :

La « fitness » => les objectifs de l'optimisation

Propriétés:

- définir une relation d'ordre partiel entre individus
- être évaluable.

Les Algorithmes « évolutionnaires »

Les opérateurs génétiques :

La mutation

On altère aléatoirement une partie du chromosome => Permet d'éviter les mimima locaux.

Le croisement

On combine les chromosomes de deux parents

=> Permet de partager l'information

La sélection des parents :

Stratégie élitiste

Optimisation multicritère

$$f: D \to \mathbf{R}^{\mathbf{p}}, D \subset \mathbb{R}^{n}$$

$$\min_{x \in D} f(x)$$

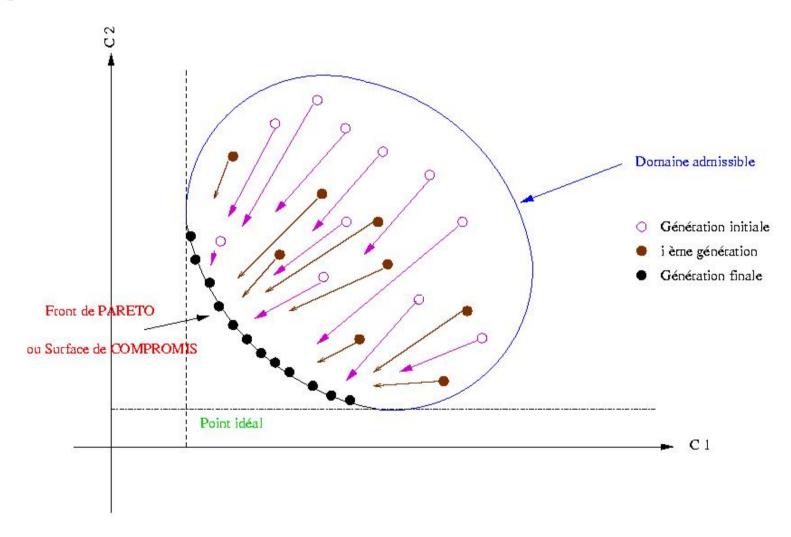
$$où: f(x) = \{f_1(x), f_2(x), ..., f_p(x)\}$$

La « fitness » de x :

rang de x = nombre d'éléments qui dominent x dans la population courante

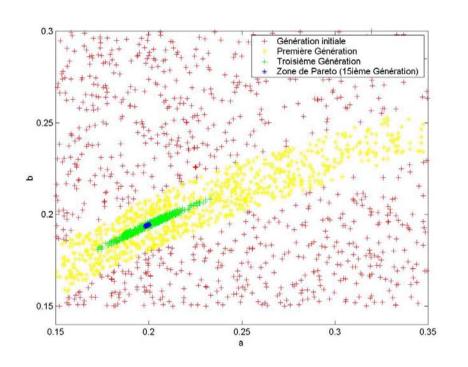
Zone de Pareto = { x de rang 0}

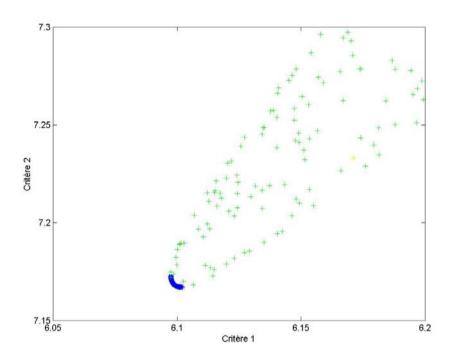
Population pareto-optimale



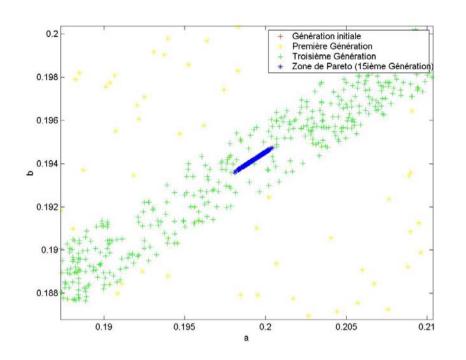
CONVERGENCE DE LA POPULATION VERS LE FRONT DE PARETO

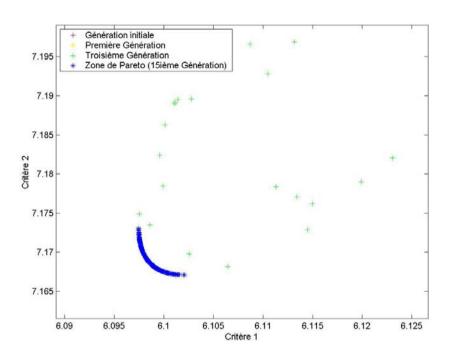
Convergence de la population



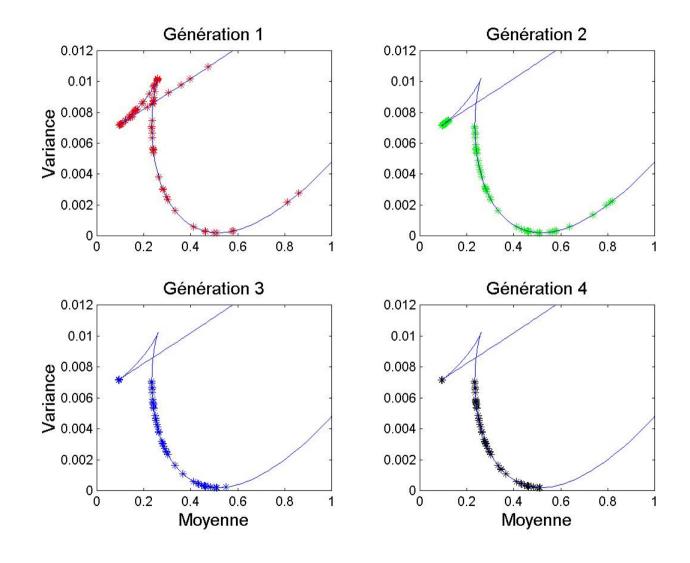


Convergence de la population





Autre exemple



Optimisation en présence d'incertitudes :

$$f: D \to \mathbb{R}$$
 , $D \subset \mathbb{R}^n$
$$\min_{x \in D} f(x)$$

$$avec: f(x) = f(a, x)$$

$$où$$

$$a = \{ paramètres incertains \}$$

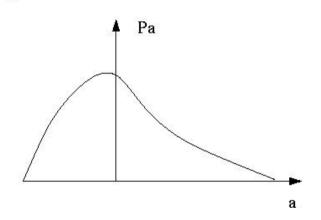
Les paramètres incertains a sont modélisés comme des variables aléatoires A de distribution de probabilité connue

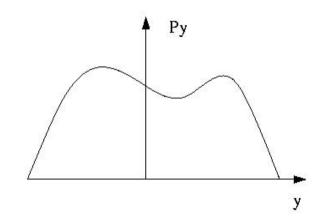
x : variables de décision déterministes

1

$$y = f(a,x)$$
 \longrightarrow $y : valeur du critère$

a: paramètres incertains





Le critère f(a,x) => une variable aléatoire $Y_A(x)$!! min $Y_A(x)$ n 'a plus de sens!!

On se ramène à un problème d'optimisation bien posé :

- 1. Problème déterministe associé : $\min f(\overline{a}, x)$
- 2. Problème monocritère :

On choisit un des critères caractérisant la densité de probabilité de $Y_{A}(x)$

- -Moyenne $E(Y_A(x))$
- $-Variance Var(Y_{A}(x))$
- $-\operatorname{Pr} ob(y_{A}(x) \ge y_{\lim})$

œ

Optimisation stochastique

3. Problème multicritère

On choisit:

- Plusieurs des critères caractérisant la densité de probabilité de $Y_{\scriptscriptstyle A}(x)$
- Plusieurs des critères caractérisant la densité de probabilité de plusieurs objectifs (variables aléatoires) caractérisant les performances du système.
- 4. Problème de satisfaction de contraintes :

Trouvez
$$\{ x \in D \mid \Pr{ob(Y_A(x) \le \varepsilon) \ge \alpha} \}$$

5. etc . . .

Exemple d'application: Calibration d'un modèle

Source de l'incertitude : les mesures expérimentales

On mesure 6 grandeurs physiques

$$a = \{a_1, a_2, \dots, a_6\}$$

permettant d'évaluer y(a) (« valeur mesurée »)
en chacun des $Ness$ (= 48) points expérimentaux :

=> On les modélise par 6 variables aléatoires.

• Les paramètres (phénoménologiques) $x = \{x_1, x_2\}$ du modèle sont les variables de décision à déterminer.

- En chaque point expérimental, l'écart :
- $e(A_i,x)$ = valeur calculée $y^*(A_i,x)$ valeur mesurée $y(A_i)$ est une variable aléatoire.
- Toutes fonctions de ces variables aléatoires mesurant les écarts sur les 48 points expérimentaux sont des variables aléatoires.
- En particulier, les normes L₁ et L₂ que nous avons choisi d'étudier :

$$F_1(A_1, A_2, ..., A_{Ness}, x) = \frac{1}{Ness} \sum_{i=1, Ness} |e_i(A_i, x)|$$

$$F_2(A_1, A_2, ..., A_{Ness}, x) = \frac{1}{Ness} \sum_{i=1, Ness} (e_i(A_i, x))^2$$

Méthode de résolution :

« External Sampling Method »

- On construit un échantillon de taille N respectant les distributions de probabilité des 6 variables aléatoires en chacun des 48 points expérimentaux.
- Pour tout couple {x₁, x₂} des paramètres du modèle on peut calculer les réalisations de e(a,x) et obtenir les distributions empiriques de

$$F_1(A_1, A_2, ..., A_{Ness}, x)$$
 et $F_2(A_1, A_2, ..., A_{Ness}, x)$

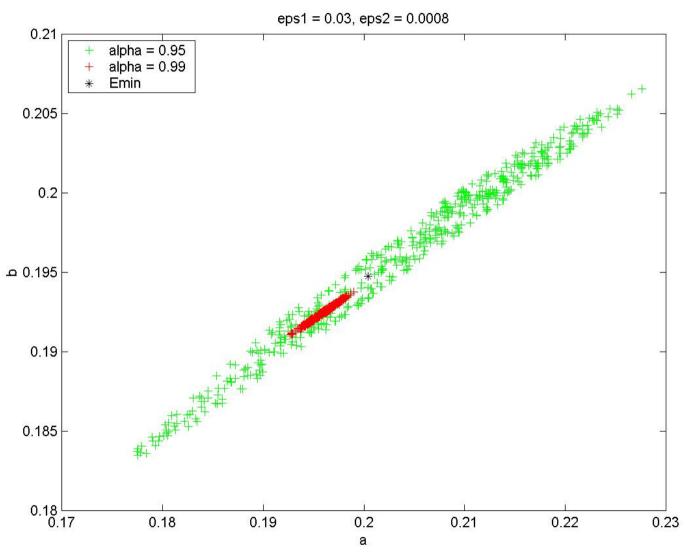
Les différents problèmes traités :

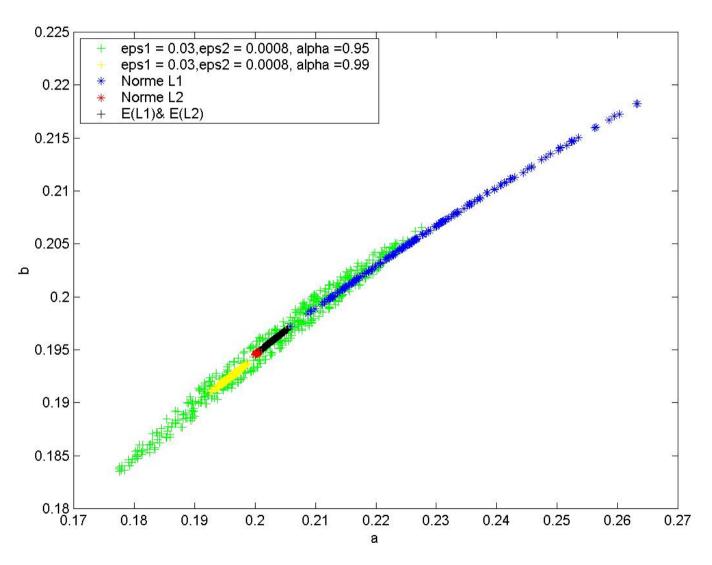
Minimisation de la norme L₁

$$\begin{cases}
\min E[F_{1}(A_{1}, A_{2}, ..., A_{Ness}, x)] \\
\min Var[F_{1}(A_{1}, A_{2}, ..., A_{Ness}, x)]
\end{cases}$$

- Minimisation de la norme L₂
- Ensemble des points qui vérifient :

$$\begin{cases} \Pr{ob(F_1(A_1, A_2, ..., A_{Ness}, x) \leq \varepsilon_1) \geq \alpha} \\ \Pr{ob(F_2(A_1, A_2, ..., A_{Ness}, x) \leq \varepsilon_2) \geq \alpha} \end{cases}$$





Difficultés

Bonne représentation de la zone et du front de Pareto

Bonne répartition des points

Population de taille suffisante

=> Nombreuses évaluations des critères

> Approximation

Réseaux de neurones

Distribution des calculs
 CCRT, Clusters de PC

Conclusion

Les métaheuristiques :

nouvelles méthodes population solution

=> nouveaux problèmes

satisfaction de contraintes optimisation multicritère

=> nouvelle approche :

- solution à & près
- optimisation stochastique

Références

Notre implémentation des A.G.:

VIZIR : AG diploïde à codage réel

- Bibliothèque de fonctions C et de scripts Python. G.
 G. Arnaud et M. Dumas SFME/LETR/RT/04-013/A
- Mise en œuvre de la distribution
 - G. Arnaud SFME/LETR/RT/07-034/A

Présentation du multicritère et des AG:

M. Dumas SFME/LETR/RT/02-027/A

Une application: I 'optimisation stochastique

M. Dumas et F. Gaudier SFME/LETR/RT/03-020/A

Deux exemples de calage de codes

G. Arnaud et al. SFME/LETR/RT/05-047/A

Quelques sites web sur l'optimisation multicritère et les métaheuristiques :

http://www.lania.mx/~ccoello/EMOO

http://www.afia-france.org/

http://www.roadef.org/

http://www.lifl.fr/~talbi/META

Site web sur I 'optimisation stochastique

http://www.stoprog.org/

Références

Optimisation multiobjectif
Yann COLLETTE et Patrick SIARRY, Eyrolles 2002

Métaheuristiques pour l'optimisation difficile Johann DREO, Alain PETROWSKI, Patrick SIARRY, Eric TAILLARD, Eyrolles 2003

Multi-objective Optimization using Evolutionary Algorithms

Kalyanmoy DEB, Wiley 2001