Fission-fragment and neutron data traced back to the macroscopic and microscopic properties of the fissioning systems

K.-H. Schmidt, B. Jurado

CEN Bordeaux Gradignan

Work performed during a short-term visit in the frame of the EFNUDAT project
Modelling of nuclear fission

Level 1: Microscopic properties of the nuclear system.
 Nucleon-nucleon interaction
 Nuclear potential, residual interactions
 Time-dependent evolution of wave functions ...

Level 2: Intermediate properties of the nuclear system.
 Potential-energy surface on the fission path
 Level densities (T=const.), Dynamical memory (early freeze-out)
 Coupling between different degrees of freedom (friction),
 Separability principle (mac.-mic.), Energy sorting,

Level 3: Observable quantities
 Mass distributions; nuclide yields
 Neutron multiplicities and energies
 Fragment kinetic energies ...

The problems: (i) Models based on Level 1 are not yet precise enough.
 (ii) Empirical models on Level 3 have low predictive power.

Our concept: Deduce properties of Level 2 from experiment.
Our aim: High precision and good predictive power.

GEF code just released: www.cenbg.in2p3.fr/GEF
Systematics of the liquid-drop potential

Stiffness of the potential with respect to mass asymmetry.

Related to the width of the mass distribution:

$$\sigma_A \propto \frac{T}{d^2 V / dA^2}$$

Momentum of inertia

Fission barrier

Itkis et al., 1988
Shell effects:
Shells beyond outer saddle resemble shells in separate fragments

Shape evolution from CN to scission
Mosel and Schmitt, 1971

Comparison:
Two-centre shell model with shells in separate fragments (midway between saddle and scission)
Macroscopic-microscopic approach: Competition between symmetric and asymmetric fission

Liquid drop favours symmetric fission, shells win, if they are close to symmetry.

Even if shells are the same for the same fragments, the mass distribution varies from one CN to another due to the interplay of macroscopic and microscopic potential.

Itkis et al., 1988
Distributions in collective variables

Potential:
- Quadratic expansion around the potential-energy minimum
- Mass asymmetry (each fission channel)
- Charge polarization (N/Z) for given mass split
- Deformation, ...

Yield:
- Statistical model applied: Gaussian distribution

\[
Y \sim \exp\left(\frac{(E^*-V_0)}{T_{\text{coll}}}\right)
\]

Width:
\[
\sigma \sim \sqrt{T_{\text{coll}}/(d^2V/dx^2)}
\]
The separability principle

Application of the macroscopic-microscopic approach to fission:
Macroscopic potential: Property of the compound nucleus
Shell effects: Properties of nascent fragments (from outer saddle to scission)
-> The separability principle seems to work.
 226Th to 260Md are described with the same shells.
Fine tuning of the parameters:
Asymmetric fission: The position of the heavy fragment

Since 1970s:
Mean position of the heavy fragment at $A=140$

New finding on a finer scale:
Mean position of heavy fragment at $Z=54$

(Böckstiegel et al., NPA 802 (2008) 12)
Even-odd effect by energy sorting

At symmetry: small even-odd effect for even-Z systems
zero even-odd effect for odd-Z systems
 -> Probability of completely paired configuration at scission
At large asymmetry: strong increase of even-odd effect
 -> Consequence of energy sorting (-> B. Jurado)

Experimental systematics on (nth,f)
(→ F. Rejmund)
Nuclide distribution

Nuclide distribution, post-neutron

Proton number

Neutron number

^{226}Th
Parameters of the model

Many quantities determined from theory or previous work. (e.g. energy release from saddle to scission (Asghar and Hasse), macroscopic potential surface (Cohen), level densities (v. Egidy), ...)

S1 fission channel:
- Mean position in heavy fragment: $<Z> = 52.5$
- Potential depth: -4.8 MeV
- Potential curvature: 0.3 units

S2 fission channel:
- Mean position in heavy fragment: $<Z> = 55$
- Potential depth: -4.0 MeV
- Potential curvature: 0.1 units

Saddle-scission energy dissipated into normal modes: 20%
Saddle-scission energy dissipated into intrinsic excitations: 50%
Threshold for asymm.-driven even-odd effect: 0.035 units in $(T_2 - T_1)/E^*$

Neck distance: 1 fm
Enhancement factor for charge polarization: 1.5 (!)

(... plus a few other parameters.)
Contributions from different components at scission:

- Intrinsic excitation energy (→ energy sorting)
- Collective excitations (→ about equal parts)
- Deformation (→ structural effects, responsible for the saw-tooth shape)
Transition from symmetric to asymmetric fission around $A = 226$

Data: Electromagnetic-induced fission, GSI experiment 2000.
$^{238}\text{U}(n,f), \ E_n$ from 1.7 Mev to 5.8 MeV

Data: Vives et al.
$^{235}\text{U}(n_{th},f) - Z$ yields

Data (Lang et al.)

GEF code
Charge polarization - $^{235}\text{U}(n_{\text{th}},f)$

Data (Lang et al.)

GEF code
Width of isobaric charge distributions - $^{235}\text{U}(n_{\text{th}},f)$

Data (Lang et al.)

GEF code
Mass yields - comparison with England and Rider 1

S: spontaneous fission, T: thermal, F: fast neutrons, H: 14 MeV neutrons
Mass yields - comparison with England and Rider 2

S : spontaneous fission, T: thermal, F: fast neutrons, H: 14 MeV neutrons
Mass yields - comparison with England and Rider 3

S: spontaneous fission, T: thermal, F: fast neutrons, H: 14 MeV neutrons
Mass yields - comparison with England and Rider 4

S : spontaneous fission, T: thermal, F: fast neutrons, H: 14 MeV neutrons
Mass yields - comparison with England and Rider 5

S : spontaneous fission, T: thermal, F: fast neutrons, H: 14 MeV neutrons
Mass yields - comparison with England and Rider 6

S: spontaneous fission, T: thermal, F: fast neutrons, H: 14 MeV neutrons
Mass yields - comparison with England and Rider 7

S: spontaneous fission, T: thermal, F: fast neutrons, H: 14 MeV neutrons
Mass yields - comparison with England and Rider 8

S: spontaneous fission, T: thermal, F: fast neutrons, H: 14 MeV neutrons
Mass yields - comparison with England and Rider 9

S : spontaneous fission, T: thermal, F: fast neutrons, H: 14 MeV neutrons
Mass yields - comparison with England and Rider 10

S : spontaneous fission, T: thermal, F: fast neutrons, H: 14 MeV neutrons
235U(n$_{th}$,f) – nuclide yields - 1
$^{235}\text{U}(n_{th},f)$ – nuclide yields - 2
\(^{235}\text{U}(n_{\text{th}},f)\) – nuclide yields - 3
$^{235}\text{U}(n_{th},f)$ – nuclide yields - 4
$^{235}\text{U}(n_{th},f) - \text{nuclide yields - 5}$
$^{249}\text{Cf}(n_{th},f)$ – nuclide yields - 1
$^{249}\text{Cf}(n_{th},f)$ – nuclide yields - 2
$^{249}\text{Cf}(n_{\text{th}},f)$ – nuclide yields - 3
249Cf(n_{th},f) – nuclide yields - 4
$^{249}\text{Cf}(n_{\text{th}},f)$ – nuclide yields - 5
Summary

Ingredients of the GEF code:

- Statistical population of states in the fission valleys at dynamical freeze-out.
- Separability principle governs interplay of macroscopic and microscopic effects.
- Three fission channels, constant positions in Z (heavy fragment).
- Empirical stiffness against mass asymmetry.
- Coupling of saddle-scission energy release to collective and intrinsic excitations.
- Energy sorting determines division of intrinsic energy between fragments.
- Final step of energy sorting creates asymmetry-associated even-odd effect.
- Statistical evaporation code with gamma competition.

Achievements:

- Consistent description from polonium to fermium with the same parameter set.
- From spontaneous fission to $E^* = 14$ MeV.
- Most parameters fixed from independent sources, only <20 free parameters.
- Very good reproduction of experiments and high predictive power.
- Combines some advantages of empirical and microscopical models.
- May be useful for nuclear technology.
- Particularities in superfluid regime (energy sorting; even-odd effect) discovered.
- New insight into dynamical times (energy transfer, proton exchange).

GEF code is available at: www.cenbg.in2p3.fr/GEF or www.khs-erzhausen.de